Optical Spectroscopy

Part of the Advanced Texts in Physics book series (ADTP)


The method of spectroscopy, using a suitable light source and spectral apparatus for radiation analysis, has its natural field of application in the determination of the general energy-level structure in the energy range corresponding to UV, visible and IR light. The energy-level scheme for atoms and ions of many different charge states has been established from spectral analysis in different wavelength regions, as discussed in Chap. 2. Many of the observed spectral lines are listed in standard monographs [6.16.5]. Hyperfine structure can also be studied in many cases using high-resolution instruments. The first observations of hyperfine structure in optical spectra were made at the end of the 19th century by A. Michelson (1891) and by Ch. Fabry and A. Pérot (1897). An interpretation of the structure was put forward at the end of the 1920s. The optical method for studies of hyperfine structure is particularly suitable when unpaired s-electrons are present (large hyperfine structure). A large number of nuclei have been studied with regard to nuclear spin and moments through the years. Many radioactive isotopes have also been studied using very small samples. Although the classical optical method has low accuracy, compared with resonance methods (Chap. 7) or laser techniques (Chap. 9), its field of application is wide. A very large number of excited levels can be studied through the structure in the large number of lines emitted by a light source. The structure in spectral lines, connecting a ground state or a well-populated metastable state with higher-lying, short-lived states, can also be studied in absorption experiments, in which the atomic absorption in a continuous spectral distribution is recorded. The techniques of classical optical spectroscopy have been covered in [6.66.8].


Spectral Line Optical Spectroscopy Hubble Space Telescope Free Spectral Range Continuum Light Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [6.1]
    G.R. Harrison (ed.): MIT Wavelength Tables (Wiley, New York 1969)Google Scholar
  2. [6.2]
    F.M. Phelps III: MIT Wavelength Tables, Vol. 2: Wavelengths by Element (MIT Press, Cambridge, MA 1982)Google Scholar
  3. [6.3]
    R.L. Kelly, L.J. Palumbo: Atomic and ionic emission lines below 2000 Angstroms, hydrogen through krypton. NRL Report 7599 (Naval Research Laboratory, Washington, DC 1973)Google Scholar
  4. R.L. Kelly: Atomic and ionic spectral lines below 2000 Angstroms, hydrogen through krypton. J. Phys. Chem. Ref. Data, Suppl. No. l to Vol. 16 (1987)Google Scholar
  5. [6.4]
    J. Reader, C.H. Corliss, W.L. Wiese, G.A. Martin: Wavelengths and Transition Probabilities for Atoms and Atomic Ions. NSRDS-NBS 68 (US Govt. Prtg. Off., Washington, DC 1980)Google Scholar
  6. [6.5]
    A.R. Striganov, N.S. Sventitskii: Tables of Spectral Lines in Neutral and Ionized Atoms (IFI/Plenum, New York 1968)Google Scholar
  7. [6.6]
    A. Thorne, U. Litzén, S. Johansson: Spectrophysics (Springer, Berlin, Heidelberg 1999)Google Scholar
  8. B.P. Straugan, S. Walker: Spectroscopy, Vols. 1-3 (Chapman & Hall, London 1976)Google Scholar
  9. [6.7]
    P.F.A. Klinkenberg: In Methods of Experimental Physics, Vol. 13, Spectroscopy (Academic Press, New York 1976) p. 253Google Scholar
  10. [6.8]
    P. Bousquet: Spectroscopy and its Instrumentation (Hilger, London 1971)Google Scholar
  11. [6.9]
    J. Kuba, L. Kucera, F. Plzak, M. Dvorak, J. Mraz: Coincidence Tables for Atomic Spectroscopy (Elsevier, Amsterdam 1965)Google Scholar
  12. [6.10]
    R. Beck, W. Englisch, K. Gürs: Tables of Laser Lines in Gases and Vapors, 3rd edn., Springer Ser. Opt. Sci., Vol. 2 (Springer, Berlin, Heidelberg 1980)Google Scholar
  13. M.J. Weber: Handbook of Laser Wavelengths (CRC Press, Boca Raton 1999)Google Scholar
  14. [6.11]
    A.C.G. Mitchell, M.W. Zemansky: Resonance Radiation and Excited Atoms (Cambridge University Press, Cambridge 1961)Google Scholar
  15. [6.12]
    I.I. Sobelmann, L.A. Vainshtein, E.A. Yukov: Excitation of Atoms and Broadening of Spectral Lines, 2nd edn., Springer Ser. Chem. Phys., Vol. 7 (Springer, Berlin, Heidelberg 1995)Google Scholar
  16. [6.13]
    B. Wende (ed.): Spectral Line Shapes (de Gruyter, Berlin 1981)Google Scholar
  17. [6.14]
    K. Burnett (ed.): Spectral Line Shapes (de Gruyter, Berlin 1983)Google Scholar
  18. [6.15]
    C.H. Corliss, W.R. Bozman: Experimental Transition Probabilities for Spectral Lines of Seventy Elements, NBS Monograph 53 (National Bureau of Standards, Washington, DC 1962)Google Scholar
  19. [6.16]
    C.H. Corliss, J.L. Tech: Revised lifetimes of energy levels in neutral iron. J. Res. Natl. Bur. Stand. Sect. A 80, 787 (1976)Google Scholar
  20. [6.17]
    C. de Michelis, M. Mattioli: Spectroscopy and impurity behaviour in fusion plasmas. Rep. Prog. Phys. 47, 1233 (1984)ADSGoogle Scholar
  21. [6.18]
    E.T. Kennedy: Plasmas and intense laser light. Contemp. Phys. 25, 31 (1984)ADSGoogle Scholar
  22. [6.19]
    T.P. Hughes: Plasmas and Laser Light (Wiley, New York 1975)Google Scholar
  23. [6.20]
    G. Bekefi(ed.): Principles of Laser Plasmas (Wiley, New York 1976)Google Scholar
  24. [6.21]
    K. Laqua: ‘Analytical Spectroscopy using Laser Atomizers.’ In: Analytical Laser Spectroscopy, ed. by N. Omenetto (Wiley, New York 1979)Google Scholar
  25. [6.22]
    M.N. Rosenbluth, R.Z. Sagdeev (eds.): Physics of Laser Plasma (North-Holland, Elsevier, Amsterdam 1991)Google Scholar
  26. [6.23]
    V.S. Lisitsa: Atoms in Plasmas (Springer, Berlin, Heidelberg 1994)Google Scholar
  27. E. Oks: Plasma Spectroscopy, Springer Series on Atoms and Plasmas, Vol. 9 (Springer, Berlin, Heidelberg 1995)Google Scholar
  28. F.J. Wuilleumier, Y. Petroff, I. Nenner (eds.): Vacuum Ultraviolet Radiation Physics (World Scientific, Singapore 1993)Google Scholar
  29. R.L. Johnson, H. Schmidt-Böcking, B.F. Sonntag (eds.): X-Ray and Inner Shell Processes, AIP Conference Proceedings Vol.389 (AIP, Woodbury 1997)Google Scholar
  30. [6.24]
    N.G. Basov, Yu.A. Zakharenkov, N.N. Zorev, G.V. Sklizkov, A.A. Rupasov, A.S. Shikanov: Heating and Compression of Thermonuclear Targets by Laser Beams (Cambridge University Press, Cambridge 1986)Google Scholar
  31. [6.25]
    R.D. Cowan: Progress in the spectroscopy of highly ionized atoms and its use in plasma diagnostics. Phys. Scr. 24, 615 (1981)ADSGoogle Scholar
  32. H.W. Drawin: Atomic physics and thermonuclear fusion research, Phys. Scr. 24, 622 (1981)ADSGoogle Scholar
  33. R.C. Isler: Impurities in Tokamaks. Nuclear Fusion 24, 1599 (1984)Google Scholar
  34. E. Källne, J. Källne: X-ray spectroscopy in fusion research. Phys. Scr. T17, 152 (1987)ADSGoogle Scholar
  35. [6.26]
    S. Bashkin: Optical spectroscopy with van de Graaff accelerators. Nucl. Instrum. Methods 28, 88 (1964)Google Scholar
  36. [6.27]
    L. Kay: A van de Graaff beam as a source of atomic emission spectra. Phys. Lett. 5, 36 (1963)ADSGoogle Scholar
  37. [6.28]
    J.O. Stoner, J. A. Leavit: Reduction in Doppler broadening of spectral lines in fast-beam spectroscopy. Appl. Phys. Lett. 18, 477 (1971)ADSGoogle Scholar
  38. [6.29]
    R. Hutton, L. Engström, E. Träbert: Nucl. Instrum. Methods Phys. Res. B 31, 294 (1988)ADSGoogle Scholar
  39. [6.30]
    L.J. Curtis, H.J. Berry, J. Bromander: A meanlife measurement of the 3d 2 D resonance doublet in SiII by a technique which exactly accounts for cascading. Phys. Lett. A 34, 169 (1971)ADSGoogle Scholar
  40. L.J. Curtis: In: [6.37]Google Scholar
  41. [6.31]
    L. Engström: CANDY, a computer program to perform ANDC analysis of cascade corrected decay curves. Nucl. Instrum. Methods 202, 369 (1982)Google Scholar
  42. [6.32]
    I. Martinson, A. Gaupp: Atomic physics with ion accelerators — beam-foil spectroscopy. Phys. Rep. 15, 113 (1974)ADSGoogle Scholar
  43. [6.33]
    H.G. Berry, L.J. Curtis, D.G. Ellis, R.M. Schectman: Hyperfine quantum beats in oriented 14N IV. Phys. Rev. Lett. 35, 274 (1975)ADSGoogle Scholar
  44. [6.34]
    U. Fano, J.H. Macek: Impact excitation and polarization of the emitted light. Rev. Mod. Phys. 45, 553 (1973)ADSGoogle Scholar
  45. [6.35]
    W. Wittmann, K. Tillmann, H.J. Andrä, P. Dobberstein: Fine-structure measurement of 4He by zero-field quantum beats. Z. Physik 257, 279 (1972)ADSGoogle Scholar
  46. [6.36]
    O. Poulsen, J.L. Subtil: Hyperfine structure measurement in Be III. J. Phys. B 7, 31 (1974)ADSGoogle Scholar
  47. [6.37]
    S. Bashkin (ed.): Beam-Foil Spectroscopy, Topics Current Phys., Vol.1 (Springer, Berlin, Heidelberg 1976)Google Scholar
  48. [6.38]
    I.A. Sellin, D.J. Pegg (eds.): Beam-Foil Spectroscopy, Vols. 1,2 (Plenum, New York 1976)Google Scholar
  49. [6.39]
    S. Bashkin (ed.): Beam-Foil Spectroscopy. Proc. 3rd Int. Conf. on Beam-Foil Spectroscopy. Nucl. Instrum. Methods 110 (1973)Google Scholar
  50. [6.40]
    Proc. Int. Conf. on Fast Ion Beam Spectroscopy. Proc. Colloque No. 1. J. Physique 40 (1978)Google Scholar
  51. [6.41]
    E.J. Knystautas, R. Drouin (eds.): Proc. 6th Int. Conf. on Fast Ion Beam Spectroscopy. Nucl. Instrum. Methods 202 (1982)Google Scholar
  52. [6.42]
    J.D. Silver, N.J. Peacock (eds.): The Physics of Highly Ionized Atoms. Nucl. Instrum. Methods Phys. Res. B 9, 359 (1985)Google Scholar
  53. [6.43]
    H.J. Andrä: ‘Fast Beam (Beam-Foil) Spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. B, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 829Google Scholar
  54. [6.44]
    D.J. Pegg: In: Methods of Experimental Physics, Vol. 17, ed. by P. Richard (Academic Press, New York 1980) p. 529Google Scholar
  55. [6.45]
    I. Martinson: Recent progress in the studies of atomic spectra and transition probabilities by beam-foil spectroscopy. Nucl. Instrum. Methods 202, 1 (1982)Google Scholar
  56. I. Martinson: ‘Beam-Foil Spectroscopy.’ In: Treatise on Heavy-Ion Science, Vol. 5, ed. by D.A. Bromley (Plenum, New York 1985)Google Scholar
  57. I. Martinson: The spectroscopy of highly ionized atoms. Rep. Prog. Phys. 52, 157 (1989)ADSGoogle Scholar
  58. [6.46]
    C.L. Cocke: ‘Beam-Foil Spectroscopy.’ In: Methods of Experimental Physics, Vol. 13 (Academic Press, New York 1976)Google Scholar
  59. [6.47]
    H.G. Berry: Beam-foil spectroscopy. Rep. Progr. Phys. 40, 155 (1977)ADSGoogle Scholar
  60. [6.48]
    H.G. Berry, M. Mass: Beam-foil spectroscopy. Ann. Rev. Nucl. Part. Sci. 32, 1 (1982)ADSGoogle Scholar
  61. S.M. Schafroth, J.C. Austin (eds.): Accelerator-Based Atomic Physics — Techniques and Applications (AIP Press, New York 1997)Google Scholar
  62. [6.49]
    J. Schwinger: On the classical radiation of accelerated electrons. Phys. Rev. 75, 1912 (1949)MathSciNetADSzbMATHGoogle Scholar
  63. R.P. Madden, K. Codling: Phys. Rev. Lett. 10, 516 (1963)ADSGoogle Scholar
  64. K. Codling: Applications of synchrotron radiation. Rep. Progr. Phys. 36, 541 (1973)ADSGoogle Scholar
  65. See also O.J. Jackson: Classical Electrodynamics, 2nd edn. (Wiley, New York 1975)Google Scholar
  66. [6.50]
    D.H. Tomboulian, P.L. Hartman: Spectral and angular distribution of ultraviolet radiation from the 300 MeV Cornell synchrotron. Phys. Rev. 102, 1423 (1956)ADSGoogle Scholar
  67. [6.51]
    E. Matthias, R.A. Rosenberg, E.D. Poliakoff, M.G. White, S.-T. Lee, D.A. Shirley: Time-resolved VUV spectroscopy using synchrotron radiation: Fluorescent lifetimes of atomic Kr and Xe. Chem. Phys. Lett. 52, 239 (1977)ADSGoogle Scholar
  68. [6.52]
    T. Möller, G. Zimmerer: Time-resolved spectroscopy with synchrotronradiation in the vacuum ultraviolet. Phys. Scr. T17, 177 (1987)ADSGoogle Scholar
  69. R. Rigler, O. Kristensen, J. Roslund, P. Thyberg, K. Oba, M. Eriksson: Molecular structures and dynamics: Beamline for time-resolved spectroscopy at the MAX synchrotron in Lund. Phys. Scr. T17, 204 (1987)ADSGoogle Scholar
  70. [6.53]
    H. Motz: Undulators and free-electron lasers. Contemp. Phys. 20, 547 (1979)ADSGoogle Scholar
  71. [6.54]
    J.M.J. Madey: Stimulated emission of Bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906 (1971)ADSGoogle Scholar
  72. D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman, T.I. Smith: First operation of free electron laser. Phys. Rev. Lett. 38, 892 (1977)Google Scholar
  73. [6.55]
    V.L. Granatstein, C.W. Robertson (eds.): Third special issue on free electron lasers. IEEE J. Quantum Electron. QE-21, 804–1113 (1985)Google Scholar
  74. [6.56]
    J.M.J. Madey, A. Renieri (eds.): Free Electron Lasers (Conf. Proc.) (North-Holland, Amsterdam 1985)Google Scholar
  75. [6.57]
    F.C. Marshall: Free Electron Lasers (Macmillan, New York 1985)Google Scholar
  76. H.P. Freund, R.K. Parker: Free-electron lasers. Sci. Am. 260(4), 56 (1989)Google Scholar
  77. [6.58]
    C. Brau: Free Electron Lasers (Academic Press, New York 1990)Google Scholar
  78. [6.59]
    E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov: The physics of free electron lasers: An Introduction. Phys. Rep. 260, 187 (1995)ADSGoogle Scholar
  79. [6.60]
    H.P. Freud, T.M. Antonsen Jr.: Principles of Free-Electron Lasers, 2nd edn. (Chapman & Hall, London 1996)Google Scholar
  80. [6.61]
    Proc. 17th Int. Free Electron Laser Conf., Nucl. Instrum. Methods A 375 (1996)Google Scholar
  81. [6.62]
    V.H. Harutunian, S.G. Oganesyan: Laser interaction — free electron interaction. Phys. Rep. 270, 217 (1996)ADSGoogle Scholar
  82. [6.63]
    J.M. Ortega, Y. Lapierre, B. Girard, M. Billardon, P. Elleaume, C. Baziin, M. Bergher, M. Velghe, Y. Petroff: Ultraviolet coherent generation from an optical klystron. IEEE J. Quantum Electron. QE-21, 909 (1985)ADSGoogle Scholar
  83. S. Werin, M. Eriksson, J. Larsson, A. Persson, S. Svanberg: First results in coherent harmonic generation using the undulator at the MAX-Lab electron storage ring. Nucl. Instrum. Methods Phys. Res. A 290, 589 (1990)ADSGoogle Scholar
  84. [6.64]
    R. Bonifacio, C. Pellegrini, I.M. Narducci: Opt. Commun. 50, 373 (1984)ADSGoogle Scholar
  85. A VUV Free Electron Laser at the TESLA Test Facility at DESY: Conceptual Design Report (DESY Print, Hamburg 1995)Google Scholar
  86. J.R. Schneider: Properties and scientific perspectives of a single-pass X-ray free-electron laser. Nucl. Instrum. Methods Phys. Res. A 388, 41 (1997)ADSGoogle Scholar
  87. [6.65]
    C. Joshi, T. Katsouleas (eds.): Laser Accelerators of Particles, AIP Conf. Proc. Vol. 130 (Am. Inst. Physics, New York 1985)Google Scholar
  88. J. Wurtele (ed.): Advanced Accelerator Concepts, AIP Conference Proceedings Vol. 279 (AIP, Port Jefferson 1992)Google Scholar
  89. [6.66]
    K. Siegbahn: ‘Electron spectroscopy for solids, surfaces, liquids and free molecules.’ In: Molecular Spectroscopy (Heyden & Son, London 1983) Chap. 15, p. 227Google Scholar
  90. [6.67]
    C. Kunz (ed.): Synchrotron Radiation. Techniques and Applications, Topics Current Phys., Vol. 10 (Springer, Berlin, Heidelberg 1979)Google Scholar
  91. [6.68]
    H. Winich, S. Doniach (eds.): Synchrotron Radiation Research (Plenum, New York 1980)Google Scholar
  92. [6.69]
    E.E. Koch (ed.): Handbook on Synchrotron Radiation, Vols. 1-3, (North-Holland, Amsterdam 1983, 1986, 1987)Google Scholar
  93. [6.70]
    S. Ebashi, M. Koch, E. Rubinstein (eds.): Synchrotron Radiation Research (North-Holland, Amsterdam 1991)Google Scholar
  94. M. Altarelli, F. Schachter, J. Cross: Making ultrabright X-rays. Sci. Am. 279(6), 36 (1998)Google Scholar
  95. [6.71]
    E.J. Ansaldo: Uses of synchrotron radiation. Contemp. Phys. 18, 527 (1977)ADSGoogle Scholar
  96. W. Jitschin: ‘Inner-Shell Spectroscopy with Hard Synchrotron Radiation.’ In: Progress in Atomic Spectroscopy, Pt. D, ed. by H.J. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 295Google Scholar
  97. [6.72]
    H. Winick: Synchrotron Radiation Sources — A Technical Primer (World Scientific, River Edge 1994)Google Scholar
  98. [6.73]
    H.H. Malitson: The solar energy spectrum. Sky and Telescope 29(4), 162 (1965)ADSGoogle Scholar
  99. [6.74]
    W.K. Pratt: Laser Communication Systems (Wiley, New York 1969)Google Scholar
  100. [6.75]
    S.P. Davis: Diffraction Grating Spectrometers (Holt, Rinehard, Winston, New York 1970)Google Scholar
  101. R.A. Sawyer: Experimental Spectroscopy (Dover, New York 1963)Google Scholar
  102. [6.76]
    D.A. Skoog, D.M. West: Principles of Instrumental Analysis (Holt-Saunders, Philadelphia 1980)Google Scholar
  103. [6.77]
    M.C. Hutley: Diffraction Gratings (Academic Press, London 1982) Handbook of Diffraction Gratings, Ruled and Holographic (Jobin-Yvon Optical Systems, Metuchen, NJ 1970)Google Scholar
  104. [6.78]
    H. Walther: Das Kernquadrupolmoment des 55Mn. Z. Physik 170, 507 (1962)ADSGoogle Scholar
  105. [6.79]
    J.M. Vaughan: The Fabry-Pérot Interferometer (Hilger, Bristol 1989)Google Scholar
  106. [6.80]
    W. Demtröd er: Laser Spectroscopy, 3rd edn. (Springer, Berlin, Heidelberg 2003)Google Scholar
  107. [6.81]
    J.F. James: A Student’s Guide to Fourier Transforms (Cambridge University Press, Cambridge 1995)Google Scholar
  108. R.W. Ramirez: The FFT: Fundamentals and Concepts (Prentice Hall, Englewood Cliffs, NJ 1985)Google Scholar
  109. H.J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms, 2nd edn., Springer Ser. Inf. Sci., Vol. 2 (Springer, Berlin, Heidelberg 1982)Google Scholar
  110. [6.82]
    G. Guelachvili: High accuracy Doppler-limited 106 samples Fourier transform spectroscopy. Appl. Opt. 17, 1322 (1978)ADSGoogle Scholar
  111. [6.83]
    S. Tolansky: An Introduction to Interferometry (Longmans, London 1973)Google Scholar
  112. [6.84]
    W.H. Steel: Interferometry, 2nd edn. (Cambridge University Press, Cambridge 1983)Google Scholar
  113. [6.85]
    P. Hariharan: Optical Interferometry (Academic Press, New York 1986)Google Scholar
  114. [6.86]
    P. Hariharan: Basics of Interferometry (Academic Press, London 1992)Google Scholar
  115. [6.87]
    R.J. Bell: Introductory Fourier Transform Spectroscopy (Academic Press, New York 1972)Google Scholar
  116. [6.88]
    P.K. Rastogi: Holographic Interferometry (Springer, Berlin, Heidelberg 1994)Google Scholar
  117. [6.89]
    D.B. Chase, J.F. Rabold (eds.): Fourier Transform Raman Spectroscopy (Academic Press, London 1994)Google Scholar
  118. [6.90]
    Th. Kreis: Holographic Interferometry — Principles and Methods (Akademie Verlag, Berlin 1996)Google Scholar
  119. [6.91]
    B.C. Smith: Advanced Fourier Transform Infrared Spectroscopy (Springer, Berlin, Heidelberg 1997)Google Scholar
  120. [6.92]
    The Optical Industry & Systems Purchasing Directory, 26th edn. (Laurin Publ. Co., Pittsfield, MA 1980) p.B–114Google Scholar
  121. [6.93]
    R.J. Keyes (ed.): Optical and Infrared Detectors, 2nd. edn. Topics Appl. Phys., Vol. 19 (Springer, Berlin, Heidelberg 1980)Google Scholar
  122. [6.94]
    R.H. Kingston: Detection of Optical and Infrared Radiation, Springer Ser. Opt. Sci., Vol. 10 (Springer, Berlin, Heidelberg 1979)Google Scholar
  123. [6.95]
    R.W. Boyd: Radiometry and the Detection of Optical Radiation (Wiley, New York 1983)Google Scholar
  124. [6.96]
    H.H. Melchior: ‘Demodulation and photodetection techniques.’ In: Laser Handbook, Vol. 1, ed. by T. Arecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) Chap. 7Google Scholar
  125. [6.97]
    E.L. Dereniak, D.G. Crowe: Optical Radiation Detectors (Wiley, New York 1984)Google Scholar
  126. [6.98]
    G.H. Rieke: Detection of Light from the Ultraviolet to the Submillimeter Region (Cambridge University Press, Cambridge 1994)Google Scholar
  127. [6.99]
    E.L. Dereniak, G.D. Boreman: Infrared Detectors and Systems (Wiley, New York 1996)Google Scholar
  128. [6.100]
    R.H. Kingston: Optical Sources, Detectors and Systems — Fundamentals and Applications (Academic Press, New York 1995)Google Scholar
  129. [6.101]
    M. Lampton: The microchannel image intensifier. Sci. Am. 245(5), 46 (1981)Google Scholar
  130. [6.102]
    Proc. Topical Meeting on Quantum-Limited Imaging and Image Processing (Optical Society of America, Washington, DC 1986)Google Scholar
  131. [6.103]
    C.N. Anagnostopolous, M.M. Blouke, M.P. Lesser (eds.): Solid State Sensor Arrays and CCD Cameras. SPIE 2654 (1996)Google Scholar
  132. [6.104]
    C.D. Mackay: Charge coupled devices in astronomy. Ann. Rev. Astron. Astrophys. 24, 255 (1986)ADSGoogle Scholar
  133. [6.105]
    M.A. Stern, A. Kaiser, H.W. Mahler, E. DiBenedetto: Low-light-level image-amplifying device with full color capability. Journal of the SMPTE 83, 185 (1974)Google Scholar
  134. [6.106]
    S. Svanberg, J. Johansson: Image registering in color at low light intensity. US Patent 5 483 379 (1996)Google Scholar
  135. [6.107]
    G. Blasse, B.C. Grabmaier: Luminescent Materials (Springer, New York 1994)Google Scholar
  136. [6.108]
    J. Miyahara: The imaging plate: A new radiation image sensor. Chem. Today 223, 29 (1989)Google Scholar
  137. [6.109]
    D.H. Lumb, G.R. Hopkinson, A.A. Weels: Performance of CCDs for X-ray imaging and spectroscopy. Nucl. Instrum. Methods 221, 150 (1984)Google Scholar
  138. [6.110]
    J.D. Cox, D.S. Langford, D.W. Williams: ‘Electronic intraoral dental imaging system employing a direct sensing CCD array.’ In: X-ray Detector Physics and Applications II, ed. by V.J. Orphan, SPIE 2009 (1993)Google Scholar
  139. [6.111]
    The Photonics Design & Application Handbook (Laurin Publ. Comp., Pittsfield, MA 1990)Google Scholar
  140. [6.112]
    G.R. Fowles: Introduction to Modern Optics (Holt, Rinehart and Winston, New York 1968)Google Scholar
  141. [6.113]
    J. Strong: Procedures in Experimental Physics (Prentice Hall, New York 1945)Google Scholar
  142. [6.114]
    M. Kasha: Transmission filters for the ultraviolet. J. Opt. Soc. Am. 38, 929 (1948)ADSGoogle Scholar
  143. [6.115]
    K. Bennett, R.L. Byer: Computer controllable wedge-plate optical variable attenuator. Appl. Opt. 19, 2408 (1980)ADSGoogle Scholar
  144. [6.116]
    C.G. Granqvist: Radiative heating and cooling with spectrally selective surfaces. Appl. Opt. 20, 2606 (1981)ADSGoogle Scholar
  145. C.G. Granqvist: Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam 1995)Google Scholar
  146. [6.117]
    C.G. Granqvist (ed.): Materials Science for Solar Energy Conversion Systems (Pergamon, Oxford 1991)Google Scholar
  147. C.G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G.A. Niklasson, D. Rönnow, M. Strømme Mattsson, M. Veszelei, G. Vaivars: Recent advances in electrochromics for smart windows applications. Solar Energy 63, 199 (1998)Google Scholar
  148. A.V. Dotsenko, L.B. Glebov, V.A. Tsekhomsky: Physics and Chemistry of Photochromic Glasses (CRC Press, Boca Raton 1998)Google Scholar
  149. [6.118]
    H. Bach, N. Neuroth (eds.): The Properties of Optical Glass (Springer, Berlin, Heidelberg 1995)Google Scholar
  150. [6.119]
    B. Edlén: The refractive index of air. Metrologia 2, 71 (1966)ADSGoogle Scholar
  151. [6.120]
    R. Revelle: Carbon dioxide and world climate. Sci. Am. 247(5), 33 (1982)Google Scholar
  152. R.A. Houghton, G.W. Woodwell: Global climatic change. Sci. Am. 260(4), 18 (1989)Google Scholar
  153. S.H. Schneider: The changing climate. Sci. Am. 261(3), 38 (1989)Google Scholar
  154. B.J. Mason: The greenhouse effect. Contemp. Phys. 30, 417 (1989)ADSGoogle Scholar
  155. B.J. Mason: Predictions of climate changes caused by manmade emissions of greenhouse gases: A critical assessment. Contemp. Phys. 36, 299 (1995)ADSGoogle Scholar
  156. [6.121]
    J.C. Farman, B.G. Gardiner, J.D. Shanklin: Large losses of total ozone in Antarctica reveal seasonal ClOx/NO2 interaction. Nature 315, 207 (1985)ADSGoogle Scholar
  157. [6.122]
    R.S. Stolarski: The Antarctic ozone hole. Sci. Am. 258(1), 20 (1988)ADSGoogle Scholar
  158. [6.123]
    O.B. Toon, R.P. Turco: Polar stratospheric clouds and ozone depletion. Sci. Am. 264(6), 40 (1991)Google Scholar
  159. [6.124]
    C.S. Zeregos, A.F. Bais: Solar Ultraviolet Radiation, Modelling, Measurements and Effects (Springer, Berlin, Heidelberg 1997)Google Scholar
  160. [6.125]
    J.H. Seinfeld: Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York 1986)Google Scholar
  161. [6.126]
    R.P. Wayne: Chemistry of Atmospheres (Clarendon, Oxford 1985)Google Scholar
  162. [6.127]
    T.E. Graedel, D.T. Hawkins, L.D. Claxton: Atmospheric Chemical Compounds: Sources, Ocurrence, Bioassay (Academic Press, Orlando 1986)Google Scholar
  163. [6.128]
    B.A. Thrush: The chemistry of the stratosphere. Rep. Prog. Phys. 51, 1341 (1988)ADSGoogle Scholar
  164. T.H. Graedel, P.J. Crutzen: The changing atmosphere. Sci. Am. 261(3), 28 (1989)Google Scholar
  165. [6.129]
    R.W. Baubel, D.B. Turner, A.C. Stern: Fundamentals of Air Pollution, 3rd edn. (Academic Press, London 1994)Google Scholar
  166. [6.130]
    W. Michaelis: Air Pollution (Springer, Berlin, Heidelberg 1997)Google Scholar
  167. [6.131]
    S.L. Valley (ed.): Handbook of Geophysics and Space Environments (McGraw-Hill, New York 1965)Google Scholar
  168. [6.132]
    M. Vergez-Deloncle: Absorption des radiations infrarouges par les gas atmosphériques. J. Physique 25, 773 (1964)Google Scholar
  169. [6.133]
    Hudson and Hudson (1975), quoted in [6.139]Google Scholar
  170. [6.134]
    L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Eattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtshinov, P. Varanasi: The HITRAN molecular database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition. J. Quant. Spectr. Radiat. Transfer 60, 665 (1998)Google Scholar
  171. P.L. Hanst: QA Soft ′96, Database and quantitative analysis program for measurements of gases (Infrared Analysis Inc., Anaheim, CA 1996)Google Scholar
  172. [6.135]
    B.A. Thompson, P. Harteck, R.R. Reeves Jr.: Ultraviolet absorption coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH2 between 1850 and 4000 Å. J. Geophys. Res. 68, 6431 (1963)ADSGoogle Scholar
  173. [6.136]
    W. Eppers: ‘Atmospheric Transmission.’ In: Handbook of Lasers with Selected Data on Optical Technology, ed. by R.J. Pressley (CRC Press, Cleveland 1977)Google Scholar
  174. [6.137]
    N.G. Jerlov: Optical Oceanography (Elsevier, Amsterdam 1968)Google Scholar
  175. T. Stefanick: The nonacoustic detection of submarines. Sci. Am. 258(3), 25 (1988)Google Scholar
  176. [6.138]
    C.D. Mobley: Light and Water — Radiative Transfer in Natural Waters (Academic Press, London 1994)Google Scholar
  177. [6.139]
    R.M. Measures: Laser Remote Sensing (Wiley-Interscience, New York 1984)Google Scholar
  178. [6.140]
    D.B. Northam, M.A. Guerra, M.E. Mock, I. Itzkan, C. Deradourian: High repetition rate frequency-doubled Nd:YAG laser for airborne bathymetry. Appl. Opt. 20, 968 (1981)ADSGoogle Scholar
  179. [6.141]
    P. Armbruster, F.P. Hessberger: Making new elements. Sci Am. 279(5), 50 (1998)Google Scholar
  180. S. Hofman: New elements — approaching Z = 114. Rep. Prog. Phys. 61, 639 (1998)ADSGoogle Scholar
  181. E.R. Scerri: The evolution of the periodic system. Sci. Am. 279(3), 56 (1998)Google Scholar
  182. [6.142]
    B. Welz: Atomic Absorption Spectroscopy (VCH, Weinheim 1985)Google Scholar
  183. J.A. Dean, T.C. Rains (eds.): Flame Emission and Atomic Absorption Spectrometry, Parts 1-3 (Marcel Dekker, New York 1969, 1971, 1975)Google Scholar
  184. [6.143]
    C.Th.J. Alkemade, R. Herrmann: Fundamentals of Analytical Flame Spectroscopy (Hilger, Bristol 1979)Google Scholar
  185. [6.144]
    D.A. Skoog: Principles of Instrumental Analysis, 3rd edn. (Saunders, Philadelphia 1985)Google Scholar
  186. D.A. Skoog, M.D. West: Fundamentals of Analytical Chemistry, 4th edn. (Saunders, Philadelphia 1986)Google Scholar
  187. [6.145]
    G.D. Christian, J.E. O’Reilly (eds.): Instrumental Analysis, 2nd edn. (Allyn and Bacon, Boston 1986)Google Scholar
  188. [6.146]
    H.H. Willard, L.L. Merritt Jr., J.A. Dean, F.A. Settle Jr.: Instrumental Methods of Analysis, 6th edn. (Wadsworth, Belmont, CA 1981)Google Scholar
  189. [6.147]
    J.U. White: Long optical paths of large aperture. J. Opt. Soc. Am. 32, 285 (1942)ADSGoogle Scholar
  190. J.U. White: Very long paths in air. J. Opt. Soc. Am. 66, 411 (1976)ADSGoogle Scholar
  191. [6.148]
    H. Edner, A. Sunesson, S. Svanberg, L. Unéus, S. Wallin: Differential optical absorption spectroscopy system used for atmospheric mercury monitoring. Appl. Opt. 25, 403 (1986)ADSGoogle Scholar
  192. [6.149]
    J.E. Stewart: Infrared Spectroscopy (Marcel Dekker, New York 1970)Google Scholar
  193. [6.150]
    H.A. Szymanski: Interpreted Infrared Spectra, Vols. 1-3 (Plenum, New York 1964-67)Google Scholar
  194. [6.151]
    S. Hüf ner: Optical Spectra of Transparent Rare Earth Compounds (Academic Press, New York 1978)Google Scholar
  195. [6.152]
    A.P.B. Lever: Inorganic Electronic Spectroscopy, 2nd edn. (Elsevier, Amsterdam 1984)Google Scholar
  196. [6.153]
    H.A. Szymanski, R.E. Erickson: Infrared Band Handbook, Vols. 1, 2 (IFI/Plenum, New York 1970)Google Scholar
  197. [6.154]
    IUPAP Tables of Wavenumbers for the Calibration of Infrared Spectrometers (Butterworths, London 1961) p. 560Google Scholar
  198. [6.155]
    B. Smith: Infrared Spectral Interpretation (Springer, Berlin, Heidelberg 1997)Google Scholar
  199. [6.156]
    R.J. Pressley (ed.): Handbook of Lasers (with Selected Data on Optical Technology (CRC Press, Cleveland, Ohio 1971) p. 407Google Scholar
  200. [6.157]
    H.A. Szymanski (ed.): Raman Spectroscopy (Plenum, New York 1967)Google Scholar
  201. [6.158]
    A. Weber (ed.): Raman Spectroscopy of Gases and Liquids, Topics Current Phys., Vol. 11 (Springer, Berlin, Heidelberg 1979)Google Scholar
  202. [6.159]
    D.P. Strommen, K. Nakamoto: Laboratory Raman Spectroscopy (Wiley, New York 1984)Google Scholar
  203. [6.160]
    M.M. Sushchinskii: Raman Spectra of Molecules and Crystals (Israel Progr. for Sci. Transl., Jerusalem 1972)Google Scholar
  204. [6.161]
    J.F. Ferraro, K. Nakamoto: Introductory Raman Spectroscopy (Academic Press, London 1994)Google Scholar
  205. [6.162]
    H. Bergström, Lund Institute of Technology (unpublished)Google Scholar
  206. [6.163]
    G.L. Eesley: Coherent Raman Spectroscopy (Pergamon, Oxford 1981)Google Scholar
  207. [6.164]
    S. Svanberg: Lasers as probes for air and sea. Contemp. Phys. 21, 541 (1980)ADSGoogle Scholar
  208. [6.165]
    E. Schanda: Physical Fundamentals of Remote Sensing (Springer, Berlin, Heidelberg 1986)Google Scholar
  209. [6.166]
    S. Svanberg: ‘Fundamentals of atmospheric spectroscopy.’ In: Surveillance of Electromagnetic Pollution and Resources by Electromagnetic Waves, ed. by T. Lund (Reidel, Dordrecht 1978)Google Scholar
  210. [6.167]
    E.J. McCartney: Absorption and Emission by Cases: Physical Processes (Wiley, New York 1983)Google Scholar
  211. [6.168]
    C.B. Ludwig, M. Griggs, W. Malkmus, E.R. Bartle: Measurements of air pollutants from satellites, 1: Feasibility considerations. Appl. Opt. 13, 1494 (1974)ADSGoogle Scholar
  212. [6.169]
    Ph.L. Hanst, S.T. Hanst: ‘Gas measurement in the fundamental infrared region.’ In: Air Monitoring by Spectroscopic Techniques ed. by M.W. Sigrist (Wiley, New York 1994)Google Scholar
  213. [6.170]
    U. Platt, D. Perner, H.W. Pätz: Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption. J. Geophys. Res. 84, 6329 (1979)ADSGoogle Scholar
  214. U. Platt: ‘Differential optical absorption spectroscopy (DOAS).’ In: Air Monitoring by Spectroscopic Techniques, ed. by M.W. Sigrist (Wiley, New York 1994)Google Scholar
  215. [6.171]
    U. Platt, D. Perner: ‘Measurements of atmospheric trace gases by long path differential UV/visible absorption Spectroscopy.’ In: Optical and Laser Remote Sensing, ed. by D.K. Killinger, A. Mooradian, Springer Ser. Opt. Sci., Vol.39 (Springer, Berlin, Heidelberg 1983)Google Scholar
  216. [6.172]
    H. Edner, P. Ragnarson, S. Spännare, S. Svanberg: A differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring. Appl. Opt. 32, 327 (1993); and Lund Reports on Atomic Physics LRAP-133 (Lund Institute of Technology, Lund 1992)ADSGoogle Scholar
  217. [6.173]
    H. Edner, A. Amer, P. Ragnarson, M. Rudin, S. Svanberg: Atmospheric NH3 Monitoring by Long-Path UV Absorption Spectroscopy. SPIE 1269, 14 (1990)ADSGoogle Scholar
  218. [6.174]
    H. Axelsson, H. Edner, A. Eilard, A. Emanuelsson, B. Galle, H. Kloo, P. Ragnarson: Measurements of aromatic hydrocarbons with the DOAS technique. AppL. Spectr. 49, 1254 (1995)ADSGoogle Scholar
  219. [6.175]
    P.V. Johnston, R.L. McKenzie: Long-path absorption measurements of tropospheric NO2 in rural New Zealand. Geophys. Lett. 11, 69 (1984)ADSGoogle Scholar
  220. [6.176]
    P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano: Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC). Appl. Phys. B 67, 419 (1998)ADSGoogle Scholar
  221. [6.177]
    M.M. Millan, R.M. Hoff: Dispersive correlation spectroscopy: A study of mask optimization procedures. Appl. Opt. 16, 1609 (1977)ADSGoogle Scholar
  222. D.M. Hamilton, H.R. Varey, M.M. Millan: Atmos. Environ. 12, 127 (1978)ADSGoogle Scholar
  223. [6.178]
    J.A. Hodgeson, W.A. McClenney, P.L. Hanst: Science 182, 248 (1973)ADSGoogle Scholar
  224. T.V. Ward, H.H. Zwick: Gas cell correlation spectrometer: GASPEC. Appl. Opt. 14, 2896 (1975)ADSGoogle Scholar
  225. H.S. Lee, H.H. Zwick: Gas filter correlation instrument for the remote sensing of gas leaks. Rev. Sci. Instrum. 56, 1812 (1985)ADSGoogle Scholar
  226. [6.179]
    J. Sandsten, H. Edner, S. Svanberg: Gas imaging using infrared gascorrelation spectrometry. Opt. Lett. 21, 1945 (1996)ADSGoogle Scholar
  227. J. Sandsten, P. Weibring, H. Edner, S. Svanberg: Real-time gas-correlation imaging employing thermal background radiation. Opt. Express 6, 92 (2000). ADSGoogle Scholar
  228. [6.180]
    U.N. Rao, A. Weber (eds.): Spectroscopy of the Earth’s Atmosphere and Interstellar Medium (Academic Press, London 1992)Google Scholar
  229. [6.181]
    J.P. Dakin, H.O. Edwards: Gas sensor using correlation spectrosopy, compatible with fibre-optic operation. Sens. Actuators B 11, 9 (1993)Google Scholar
  230. J.P. Dakin, H.O. Edwards, B.H. Weigl: Progress with gas sensors using correlation spectroscopy. Sens. Actuators B 29 (1995)Google Scholar
  231. [6.182]
    P.H. Swain, S.M. Davis (eds.): Remote Sensing: The Quantitative Approach (McGraw-Hill, 1978)Google Scholar
  232. [6.183]
    S.C. Cox (ed.): The Multispectral Imaging Sciences Working Group: Final Report, NASA Conf. Publ. No 2260 (NASA, Washington, DC 1983); Earth Observing Systems Reports, Vol. IIc, High Resolution Imaging Spectrometry (NASA, Washington, DC 1986)Google Scholar
  233. G. Vane (ed.): Imaging Spectroscopy II. Proc. SPIE-Int. Soc. Opt. Eng. 834 (1987)Google Scholar
  234. [6.184]
    P.N. Slater: Remote Sensing: Optics and Optical Systems (Addison Wesley, Reading, MA 1980)Google Scholar
  235. [6.185]
    A.F.H. Goertz, J. Wellman, W. Barnes: Optical remote sensing of the Earth. Proc. IEEE 73 (June 1985)Google Scholar
  236. [6.186]
    H.S. Chen: Space Remote Sensing Systems (Academic Press, Orlando 1985)Google Scholar
  237. [6.187]
    T.A. Croft: Nighttime images of the Earth from space. Sci. Am. 239(1), 68 (1978)Google Scholar
  238. [6.188]
    S.Q. Kidder, T.H. von der Haar: Satellite Meteorology (Academic Press, London 1995)Google Scholar
  239. [6.189]
    L.R. Allen (ed.): Thermosense XV, Proc. International Conference on Thermal Sensing and Imaging Diagnostic Applications. Proc. SPIE Int. Soc. Opt. Eng. 1933 (1993)Google Scholar
  240. [6.190]
    A. Dalgarno, D. Layzer (eds.): Spectroscopy of Astrophysical Plasmas (Cambridge University Press, Cambridge 1987)Google Scholar
  241. [6.191]
    G.B. Rybicki, A.P. Lightman: Radiative Processes in Astrophysics (Wiley, New York 1979)Google Scholar
  242. [6.192]
    D.F. Gray: The Observation and Analysis of Stellar Photospheres (Wiley, New York 1976)Google Scholar
  243. [6.193]
    D. Emerson: Interpreting Astronomical Spectra (Wiley, Chichester 1996)Google Scholar
  244. [6.194]
    R. Bingham, V.N. Tsytovich: Plasma Astrophysics (Wiley, Chichester 1997)Google Scholar
  245. [6.195]
    R.H. Baker: Astronomy (Van Nostrand, Princeton, NJ 1964)Google Scholar
  246. [6.196]
    D.J. Schroeder: Astronomical Optics (Academic Press, San Diego 1987)Google Scholar
  247. [6.197]
    B. Aschenbach: X-ray telescopes. Rep. Prog. Phys. 48, 579 (1985)ADSGoogle Scholar
  248. [6.198]
    The VLT Whitebook (European Southern Observatory, Garching 1998) (also
  249. [6.199]
    R.F. Griffin: A Photometric Atlas of the Spectrum of Arcturus (Cambridge Phil. Soc., Cambridge 1968)Google Scholar
  250. [6.200]
    J.M. Beckers, C.A. Bridges, L.B. Gilliam: A High Resolution Atlas of the Solar Irradiance from 380-700 nm (Sacramento Peak Observatory, 1983)Google Scholar
  251. [6.201]
    D. Dravins: In: KOSMOS 1980 (Swedish Phys. Soc., Stockholm 1980)Google Scholar
  252. [6.202]
    B. Edlén: Z. Astrophysik 22, 30 (1942)ADSGoogle Scholar
  253. B. Edlén: Forbidden lines in hot plasmas. Phys. Scr. T8, 5 (1984)ADSGoogle Scholar
  254. [6.203]
    R. Giacconi: The Einstein X-ray observatory. Sci. Am. 242(2), 70 (1980)ADSGoogle Scholar
  255. A. Vidal-Madjar, Th. Encrenaz, R. Ferlet, J.C. Henoux, R. Lallement, G. Vaudair: Galactic ultraviolet astronomy. Rep. Prog. Phys. 50, 65 (1987)ADSGoogle Scholar
  256. [6.204]
    S. Bowyer: Extreme ultraviolet astronomy. Sci. Am. 271(2), 22 (1994)ADSGoogle Scholar
  257. R. Giacconi: X-ray astronomy: Past achievements and future prospects, Phys. Scr. T61, 9 (1996)ADSGoogle Scholar
  258. [6.205]
    H.J. Habing, G. Neugebauer: The infrared sky. Sci. Am. 251(5), 42 (1984)ADSGoogle Scholar
  259. [6.206]
    J.B. Bahcall, L. Spitzer Jr.: The space telescope. Sci. Am. 247(1), 38 (1982)ADSGoogle Scholar
  260. E.J. Chaisson: Early results from the Hubble Space Telescope. Sci. Am. 266(6), 18 (1992)ADSGoogle Scholar
  261. D. Fischer, H. Duerbeck: Hubble — A New Window to the Universe (Copernicus-Springer, New York 1996)Google Scholar
  262. P. Benvenuti, F.D. Machetto, E.J. Schreier (eds.): Science with the Hubble Space Telescope-II (Space Telescope Science Institute, Baltimore 1996)Google Scholar
  263. [6.207]
    D.S. Leckrone, S. Johansson, G.M. Wahlgren, S.J. Adelman: High resolution UV stellar spectroscopy with the HST/GHRS, challenges and opportunities for atomic physics. Phys. Scr. T47, 149 (1993)ADSGoogle Scholar
  264. C. Collins Peterson, J.C. Brandt: Hubble Vision, Astronomy with the Hubble Space Telescope (Cambridge University Press, Cambridge 1995)Google Scholar
  265. [6.208] Material created with support to AURA/STScI from NASA contract NAS5-26555
  266. [6.209]
    J.W. Hardy: Adaptive optics. Sci. Am. 270(6), 40 (1994)ADSGoogle Scholar
  267. J.M. Beckers: Adaptive optics for astronomy: Principles, performance and applications. Am. Rev. Astron. Astrophys. 31, 13 (1993)MathSciNetADSGoogle Scholar
  268. [6.210]
    I.S. Bowen: The spectrum and composition of the gaseous nebulae. Astrophys. J. 81, 1 (1935)ADSzbMATHGoogle Scholar
  269. S. Johansson: Strong Fe II fluorescence lines in RR Tel and V1016 Cyg excited by C IV in a Bowen mechanism. Mon. Not. R. Astr. Soc. 205, 71P (1983)ADSGoogle Scholar
  270. [6.211]
    S. Johansson, V.S. Letokhov: Radiative cycle with stimulated emission from atoms and ions in an astrophysical plasma. Phys. Rev. Lett. 90, 011101 (2003)ADSGoogle Scholar
  271. [6.212]
    D.W. Weedman: Quasar Astronomy (Cambridge University Press, Cambridge 1986)Google Scholar
  272. T.J.-L. Courvoisier, E.I. Robson: The Quasar 3C 273. Sci. Am. 264(6), 24 (1991)ADSGoogle Scholar
  273. [6.213]
    P.S. Osmer: Quasars as probes of the distant and early universe. Sci. Am. 246(2), 96 (1982)ADSGoogle Scholar
  274. [6.214]
    P. Murdin: The supernova in the Large Magellanic Cloud. Contemp. Phys. 28, 441 (1987)ADSGoogle Scholar
  275. W. Hillebrandt, P. Höflich: The supernova 1987A in the Large Magellanic Cloud. Rep. Prog. Phys. 52, 1421 (1989)ADSGoogle Scholar
  276. S. Woosley, T. Weaver: The great supernova of 1987. Sci. Am. 261(2), 24 (1989)ADSGoogle Scholar
  277. D.N. Schramm, J.W. Truran: New physics from supernova 1987A. Phys. Rep. 189, 89 (1990)ADSGoogle Scholar
  278. P. Murdin: End of Fire: The Supernova in the Large Magellanic Cloud (Cambridge University Press, Cambridge 1990)Google Scholar
  279. [6.215]
    R. Fosburg: The spectrum of supernova 1987A. ESO Messenger 47, 32 (1987)ADSGoogle Scholar
  280. P. Andreani, R. Ferlet, R. Vidal-Madjar: ESO Messenger 47, 33 (1987)ADSGoogle Scholar
  281. [6.216]
    P. Connes, G. Michel: Astronomical Fourier spectrometer. Appl. Opt. 14, 2067 (1975)ADSGoogle Scholar
  282. [6.217]
    L.A. Soderblom, T.V. Johnson: The moons of Saturn. Sci. Am. 246(1), 72 (1982)ADSGoogle Scholar
  283. [6.218]
    T. Oen: Titan. Sci. Am. 246(2), 76 (1982)ADSGoogle Scholar
  284. [6.219]
    R.P. Laeser, W.I. McLaughlin, D.M. Wolff: Engineering Voyager 2’s encounter with Uranus. Sci. Am. 255(5), 34 (1986)ADSGoogle Scholar
  285. A.P. Ingersoll: Uranus. Sci. Am. 256(1), 30 (1987)ADSGoogle Scholar
  286. T.J. Johnson, R.H. Brown, L.A. Soderblom: The moons of Uranus. Sci. Am. 256(4), 40 (1987)ADSGoogle Scholar
  287. J. Kinoshita: Neptune. Sci. Am. 261(5), 60 (1989)ADSGoogle Scholar
  288. J.N. Cuzzi, L.W. Esposito: The rings of Uranus. Sci. Am. 257(1), 42 (1987)ADSGoogle Scholar
  289. [6.220]
    Sky and Telescope 73, No. 3 (1987) (Feature issue)Google Scholar
  290. Nature 321, No. 6067 (1987) (Feature issue)Google Scholar
  291. H. Balsiger, H. Fechtig, J. Geiss: A close look at Halley’s comet. Sci. Am. 259(3), 62 (1988)ADSGoogle Scholar
  292. [6.221]
    C. Arpigny, F. Dossin, J. Manfroid, P. Magain, A.C. Danks, D.L. Lambert, C. Sterken: Spectroscopy, photometry and direct filter imagery of comet P/Halley. ESO Messenger 45, 10 (1986)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations