Laser-Spectroscopic Applications

Part of the Advanced Texts in Physics book series (ADTP)


In the previous chapter we have seen how lasers can be used in a multitude of ways to gain basic information on atomic and molecular systems. Thus, the laser has had a considerable impact on basic research, and its utility within the field of applied spectroscopy is just as great. We shall discuss here some applications of considerable interest. Previously, we have mainly chosen examples of atomic rather than molecular spectroscopy, but in this chapter we shall mainly discuss applied molecular spectroscopy. First we will describe the diagnostics of combustion processes and then discuss atmospheric monitoring by laser techniques. Different aspects of laser-induced fluorescence in liquids and solids will be considered with examples from the environmental, industrial and medical fields. We will also describe laser-induced chemical processes and isotope separation with lasers. Finally, spectroscopic aspects of lasers in medicine will be discussed. Applied aspects of laser spectroscopy have been covered in [10.1, 10.2].


Dust Sandstone Radar NADH Naphthalene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [10.1]
    L.J. Radziemski, R.W. Solarz, J.A. Paisner (eds.): Laser Spectroscopy and its Applications (Dekker, New York 1987)Google Scholar
  2. [10.2]
    H. Medin, S. Svanberg (eds.): Laser Technology in Chemistry, Special issue. Appl. Phys. B 46, No. 3 (1988)Google Scholar
  3. [10.3]
    W.C. Gardiner Jr.: The chemistry of flames. Sci. Am. 246(2), 86 (1982)Google Scholar
  4. W.C. Gardiner Jr. (ed.): Combustion Chemistry (Springer, Berlin, Heidelberg 1984)Google Scholar
  5. J. Walker: The physics and chemistry underlying the infinite charm of a candle flame. Sci. Am. 238(4), 154 (1978)Google Scholar
  6. [10.4]
    A.M. Kanury: Introduction to Combustion Phenomena (Gordon and Breach, New York 1975)Google Scholar
  7. W.C. Strahle: An Introduction to Combustion (Gordon and Breach, Langhorne 1993)Google Scholar
  8. G. Cox: Combustion Fundamentals of Fire (Academic Press, London 1995)Google Scholar
  9. [10.5]
    M. Gehring, K. Hoyermann, H. Schacke, J. Wolfrum: Direct studies of some elementary steps for the formation and destruction of nitric oxide in the H-N-0 system. 14th Symp. on Combustion (Combustion Institute, Pittsburgh, PA 1973)Google Scholar
  10. [10.6]
    H. Bockhorn (ed.): Soot Formation in Combustion Mechanisms and Models, Springer Series in Chemical Physics, Vol. 59 (Springer-Verlag, Berlin, Heidelberg 1994)Google Scholar
  11. B.S. Haynes: ‘Soot and hydrocarbons in combustion.’ In: Fossil Fuel Combustion, ed. by W. Bartok, A.F. Sarofim (Wiley, New York 1991) Chap. 4.Google Scholar
  12. [10.7]
    A.G. Gaydon, H.G. Wolfhard: Flames, their Structure, Radiation and Temperature (Chapman and Hall, New York 1979)Google Scholar
  13. [10.8]
    J. Wolfrum: Chemical kinetics in combustion systems: The specific effect of energy, collisions, and transport processes. 20th Symp. on Combustion (Combustion Institute, Pittsburgh, PA 1985)Google Scholar
  14. [10.9]
    A.C. Gaydon: The Spectroscopy of Flames (Chapman and Hall, New York 1974)Google Scholar
  15. [10.10]
    D.R. Crosley (ed.): Laser Probes for Combustion Chemistry, ACS Symp. Ser. Vol. 134 (Am. Chem. Soc., Washington 1980)Google Scholar
  16. [10.11]
    A.C. Eckbreth, P.A. Bonczyk, J.F. Verdiek: Combustion Diagnostics by Laser Raman and Fluorescence Techniques. Prog. Energy Comb. Sci. 5, 253 (1979)Google Scholar
  17. [10.12]
    J.H. Bechtel, C.J. Dasch, R.E. Teets: ‘Combustion research with lasers.’ In: Laser Applications, ed. by R.K. Erf, J.F. Ready (Academic Press, New York 1984)Google Scholar
  18. J.H. Bechtel, A.R. Chraplyvy: Proc. IEEE 70, 658 (1982)Google Scholar
  19. [10.13]
    T.D. McCay, J.A. Roux (eds.): Combustion diagnostics by nonintrusive methods. Progr. Astronautics and Aeronautics, Vol. 92 (1983)Google Scholar
  20. [10.14]
    A.C. Eckbreth: Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam 1996)Google Scholar
  21. [10.15]
    K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi (eds.): Laser Diagnostics and Modelling of Combustion (Springer, Berlin, Heidelberg 1987)Google Scholar
  22. [10.16]
    M. Aldén, H. Edner, S. Svanberg, T. Högberg: Combustion studies with laser techniques, Göteborg Institute of Physics Reports GIPR-206 (Chalmers University of Technology, Göteborg 1980)Google Scholar
  23. [10.17]
    M. Aldén, H. Edner, G. Holmstedt, T. Högberg, H. Lundberg, S. Svanberg: Relative distribution of radicals and temperature in flat flames, studied by laser-induced fluorescence and BOXCARS spectroscopy. Lund Reports on Atomic Physics LRAP-1 (Lund Institute of Technology, Lund 1981)Google Scholar
  24. [10.18]
    D.R. Crosley, G.P. Smith: Laser-induced fluorescence spectroscopy for combustion diagnostics. Opt. Eng. 22, 545 (1983)Google Scholar
  25. K. Schofield, M. Steinberg: Quantitative atomic and molecular fluorescence in the study of detailed combustion processes. Opt. Eng. 20, 501 (1981)Google Scholar
  26. [10.19]
    R. Lucht: Applications of laser-induced fluorescence spectroscopy for combustion and plasma diagnostics. In: [10.1] p. 623Google Scholar
  27. [10.20]
    N.S. Bergano, P.A. Janimaagi, M.M. Salour, J.H. Bechtel: Picosecond laser spectroscopy measurement of hydroxyl fluorescence lifetime in flames. Opt. Lett. 8, 443 (1983)ADSGoogle Scholar
  28. [10.21]
    S. Agrup, F. Ossler, M. Aldén: Measurement of collisional quenching of hydrogen atoms in an atmospheric pressure hydrogen/oxygen flame by picosecond laser-induced fluorescence. Appl. Phys. B 61, 479 (1995)ADSGoogle Scholar
  29. F. Ossler, J. Larsson, M. Aldén: Measurement of the effective lifetime of O atoms in atmospheric premixed flames. Chem. Phys. Lett. 250, 287 (1996)ADSGoogle Scholar
  30. F. Ossler, T. Metz, L. Martinsson, M. Aldén: Two-dimensional visualization of fluorescence lifetimes by use of a picosecond laser and a streak camera. Appl. Opt. 37, 2303 (1998)ADSGoogle Scholar
  31. [10.22]
    F.C. Bormann, T. Nielsen, M. Burrows, P. Andresen: Single-pulse, collision-insensitive picosecond planar laser-induced fluorescence of OH A 2 Σ+(ν′=2) in atmospheric pressure flames. Appl. Phys. B 62, 601 (1996)ADSGoogle Scholar
  32. F.C. Bormann, T. Nielsen, M. Burrows, P. Andresen: Picosecond planar laser-induced fluorescence measurements of OH A 2 Σ+(ν′=2) lifetime and energy transfer in atmospheric pressure flames. Appl. Opt. 36, 6129 (1997)ADSGoogle Scholar
  33. [10.23]
    M. Aldén, H. Edner, P. Grafström, H.M. Hertz, G. Holmstedt, T. Högberg, H. Lundberg, S. Svanberg, S. Wallin, W. Wendt, U. Westblom: ‘Imaging measurements of species concentrations, temperatures and velocities in reactive flows using laser-induced fluorescence.’ In: Lasers 86, ed. by K.M. Corcoran, D.M. Sullivan, W.C. Stwalley (STS Press, McLean, VA. 1985) p. 209Google Scholar
  34. [10.24]
    M. Aldén, H. Edner, G. Holmstedt, S. Svanberg, T. Högberg: Single-pulse laser-induced OH fluorescence in an atmospheric flame, spatially resolved with a diode array detector. Appl. Opt. 21, 1236 (1982)ADSGoogle Scholar
  35. [10.25]
    M.J. Dyer, D.R. Crosley: Two-dimensional imaging of OH laser-induced fluorescence in a flame. Opt. Lett. 7, 382 (1982)ADSGoogle Scholar
  36. G. Kychakoff, R.D. Howe, R.K. Hanson, J.C. McDaniel: Quantitative visualization of combustion species in a plane. Appl. Opt. 21, 3225 (1982)ADSGoogle Scholar
  37. G. Kychakoff, R.D. Howe, R.K. Hanson: Quantitative flow visualization technique for measurements in combustion gases. Appl. Opt. 23, 704 (1984)ADSGoogle Scholar
  38. G. Kychakoff, K. Knapp, R.D. Howe, R.K. Hanson: Flow visualization in combustion gases using nitric oxide fluorescence. AIAA J. 22, 153 (1984)ADSGoogle Scholar
  39. G. Kychakoff, R.D. Howe, R.K. Hanson, M.C. Drake, R.W. Pitz, M. Lapp, C.M. Penney: Visualization of turbulent flame fronts with planar laserinduced fluorescence. Science 224, 382 (1984)ADSGoogle Scholar
  40. [10.26]
    R.K. Hanson: Combustion diagnostics: ‘Planar imaging techniques.’ In: Proc. 21st Symp. on Combustion, Munich 1986 (The Combustion Institute Pittsburgh, PA 1986)Google Scholar
  41. B. Hiller, R.K. Hanson: Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence. Appl. Opt. 27, 33 (1988)ADSGoogle Scholar
  42. R.K. Hanson, J.M. Seitzman, P.H. Paul: Planar laser-induced fluorescence imaging of combustion gases. Appl. Phys. B 50, 441 (1990)ADSGoogle Scholar
  43. V. Sick, J. Wolfrum: ‘Applied laser spectroscopy in combustion devices.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann, J. Kowalski, I. Reinhard, F. Träger (Springer, Heidelberg, Berlin 1997)Google Scholar
  44. U. Westblom, M. Aldén: Simultaneous multiple-species detection in a flame using laser-induced fluorescence. Appl. Opt. 28, 2592 (1989)Google Scholar
  45. C. Véret (ed.): Flow Visualization IV (Springer, Berlin, Heidelberg 1987)Google Scholar
  46. [10.27]
    M. Aldén, H. Edner, P. Grafström, S. Svanberg: Two-photon excitation of atomic oxygen in a flame. Opt. Commun. 42, 244 (1982)ADSGoogle Scholar
  47. M. Alden, H.M. Hertz, S. Svanberg, S. Wallin: Imaging laser-induced fluorescence of oxygen atoms in a flame. Appl. Opt. 23, 3255 (1984)ADSGoogle Scholar
  48. [10.28]
    M. Aldén, U. Westblom, J.E.M. Goldsmith: Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases. Opt. Lett. 14, 305 (1989)ADSGoogle Scholar
  49. J.E.M. Goldsmith: Two-photon-excited stimulated emission from atomic hydrogen in flames. J. Opt. Soc. Am. B 6, 1979 (1989)ADSGoogle Scholar
  50. [10.29]
    R.P. Lucht, J.P. Salmon, G.B. King, D.W. Sweeney, N.M. Laurendeau: Two-photon-excited fluorescence measurement of hydrogen atoms in flames. Opt. Lett. 8, 365 (1983)ADSGoogle Scholar
  51. [10.30]
    M. Aldén, A.L. Schawlow, S. Svanberg, W. Wendt, P.-L. Zhang: Threephoton excited fluorescence detection of atomic hydrogen in an atmospheric pressure flame. Opt. Lett. 9, 211 (1984)ADSGoogle Scholar
  52. [10.31]
    J.E.M. Goldsmith: Two-step saturated fluorescence detection of atomic hydrogen in names. Opt. Lett. 10, 116 (1985)ADSGoogle Scholar
  53. J.E.M. Goldsmith, R.J.M. Anderson: Imaging of atomic hydrogen in flames with two-step saturated fluorescence detection. Opt. Lett. 11, 67 (1985)ADSGoogle Scholar
  54. [10.32]
    M. Aldén, S. Wallin, W. Wendt: Applications of two-photon absorption for detection of CO in combustion gases. Appl. Phys. B 33, 205 (1984)ADSGoogle Scholar
  55. U. Westblom, M. Aldén: Laser-induced fluorecence detection of NH3 in flames with the use of two-photon excitation. Appl. Spectrosc. 44, 881 (1990)ADSGoogle Scholar
  56. [10.33]
    J.E.M. Goldsmith: Resonant multiphoton optogalvanic detection of atomic hydrogen in flames. Opt. Lett. 7, 437 (1982)ADSGoogle Scholar
  57. J.E.M. Goldsmith: Recent advances in flame diagnostics using fluorescence and ionization techniques. In: [10.34], p. 337Google Scholar
  58. P.J.H. Tjossem, T.A. Cool: Chem. Phys. Lett. 100, 479 (1983)ADSGoogle Scholar
  59. [10.34]
    W. Persson, S. Svanberg (eds.): Laser Spectroscopy VIII, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg 1987)Google Scholar
  60. [10.35]
    K. Tennal, G.J. Salomo, R. Gupta: Minority species concentration measurements in flames by the photoacoustic technique. Appl. Opt. 21, 2133 (1982)ADSGoogle Scholar
  61. A.C. Tam: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986)ADSGoogle Scholar
  62. [10.36]
    R.K. Hanson, P.A. Kuntz, C.H. Kruger: High-resolution spectroscopy of combustion gases using a tunable IR diode laser. Appl. Opt. 16, 2045 (1975)ADSGoogle Scholar
  63. K. Knapp, R.K.. Hanson: Spatially resolved tunable diode-laser absorption measurements of CO using optical Stark shifting. Appl. Opt. 22, 1980 (1983)ADSGoogle Scholar
  64. I. Linnerud, P. Kaspersen, T. Jaeger: Gas monitoring in the process industry using diode lasers. Appl. Phys. B 67, 297 (1998)ADSGoogle Scholar
  65. M.P. Arroya, S. Langlois, R.K. Hanson: Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor. Appl. Opt. 33, 3296 (1994)ADSGoogle Scholar
  66. [10.37]
    K. Nyholm, R. Maier, C.G. Aminoff, M. Kaivola: Detection of OH in flames by polarization spectroscopy. Appl. Opt. 32, 919 (1993)ADSGoogle Scholar
  67. K. Nyholm, R. Fritzon, M. Aldén: Two-dimensional imaging of OH in flames by use of polarization spectroscopy. Opt. Lett. 18, 1672 (1993)ADSGoogle Scholar
  68. B. Löfstedt, R. Fritzon, M. Aldén: Investigation of NO detection in flames by the use of polarization spectroscopy. Appl. Opt. 35, 2140 (1996)ADSGoogle Scholar
  69. K. Nyholm, R, Fritzon, N. Gregoriev, M. Aldén: Two-photon induced polarization spectroscopy applied to the detection on NH3 and CO molecules in cold flows and flames. Opt. Commun. 114, 76 (1995)ADSGoogle Scholar
  70. [10.38]
    Special Issue on Computerized Tomography. Proc. IEEE 71, 291 (March 1983)Google Scholar
  71. Special Issue on Industrial Applications of Computed Tomography and NMR Imaging. Appl. Opt. 24, 23 (1985)Google Scholar
  72. T.H. Newton, D.G. Potts (eds.): Technical Aspects of Computed Tomography (Mosby 1991)Google Scholar
  73. [10.39]
    K.E. Bennett, G.W. Faris, R.L. Byer: Experimental optical fan beam tomography. Appl. Opt. 23, 2678 (1984)ADSGoogle Scholar
  74. P. Kauranen, H.M. Hertz, S. Svanberg: Tomographic imaging of fluid flows by the use of two-tone frequency modulation spectroscopy. Opt. Lett. 19, 1489 (1994)ADSGoogle Scholar
  75. [10.40]
    H.M. Hertz, G.W. Faris: Emission tomography of flame radicals. Opt. Lett. 13, 351 (1988)ADSGoogle Scholar
  76. [10.41]
    H.M. Hertz: Experimental determination of 2-D flame temperature fields by interferometric tomography. Opt. Commun. 54, 131 (1985)ADSGoogle Scholar
  77. [10.42]
    A. Rose, G.J. Salamo, R. Gupta: Photoacoustic deflection spectroscopy: A new species-specific method for combustion diagnostics. Appl. Opt. 23, 781 (1984)ADSGoogle Scholar
  78. H. Sonntag, A.C. Tam: Time-resolved flow-velocity and concentration measurements using a travelling thermal lens. Opt. Lett. 10, 436 (1985)ADSGoogle Scholar
  79. G.W. Faris, R.L. Byer: Beam-deflection optical tomography. Opt. Lett. 12, 72 (1987)ADSGoogle Scholar
  80. G.W. Faris, R.L. Byer Beam-deflection optical tomography of a flame. Opt. Lett. 12, 155 (1987)ADSGoogle Scholar
  81. [10.43]
    M. Lapp, C.M. Penney: ‘Raman measurements on flames.’ In: Advances in Infrared and Raman Spectroscopy, ed. by R.J.H. Clark, R.E. Hester (Heyden, London 1977)Google Scholar
  82. [10.44]
    R.W. Dibble, A.R. Masri, R.W. Bilger Combust. Flame 67, 189 (1987)Google Scholar
  83. J.J. Valentini: Laser Raman techniques. In: [10.1] p. 507Google Scholar
  84. W. Reckers, L. Huwel, G. Grunewald, P. Andresen: Spatially resolved multispecies and temperature analysis in hydrogen flames. Appl. Opt. 32, 907 (1993)ADSGoogle Scholar
  85. [10.45]
    M. Aldén, H. Edner, S. Svanberg: Coherent anti-Stokes Raman spectroscopy (CARS) applied in combustion probing. Phys. Scr. 27, 29 (1983)ADSGoogle Scholar
  86. [10.46]
    D. Klick, K.A. Marko, L. Rimai: Broadband single-shot CARS spectra in a fired internal combustion engine. Appl. Opt. 20, 1178 (1981)ADSGoogle Scholar
  87. G.C. Alessandretti, P. Violino: Thermometry by CARS in an automobile engine. J. Phys. D 16, 1583 (1983)ADSGoogle Scholar
  88. M. Richter, B. Axelsson, M. Aldén, G. Josefsson, L.-O. Carlsson, M. Dahlberg, J. Nisbet, H. Simonsen: Investigation of the fuel distribution and the in-cylinder flow field in a stratified charge engine using laser techniques and comparison with CFD-Modelling. SAE Technical Paper Series 1999-01-3540 (SAE International, Warrendale, PA 1999)Google Scholar
  89. [10.47]
    L.A. Rahn, S.S. Johnston, R.L. Farrow, P.L. Mattern: ‘CARS thermometry in an internal combustion engine.’ In: Temperature, Vol. 5, ed. by J.F. Schooley (AIP, New York 1982)Google Scholar
  90. [10.48]
    M. Aldén, S. Wallin: CARS Experiment in a full-scale (10 × 10m2) industrial coal furnace. Appl. Opt. 24, 3434 (1985)ADSGoogle Scholar
  91. [10.49]
    B. Attal, M. Pealat, J.P. Taran: J. Energy 4, 135 (1980)Google Scholar
  92. [10.50]
    A.C. Eckbreth: CARS thermometry in practical combustors. Combust. Flame 39, 133 (1980)ADSGoogle Scholar
  93. [10.51]
    A.C. Eckbreth, P.W. Schreiber: ‘Coherent anti-Stokes Raman spectroscopy (CARS): Applications to combustion and gas-phase diagnostics.’ In: Chemical Applications of Non-Linear Raman Spectroscopy, ed. by A.B. Harvey (Academic Press, New York 1981)Google Scholar
  94. R.J. Hall, A.C. Eckbreth: ‘Coherent anti-Stokes Raman Spectroscopy (CARS): Application to combustion diagnostics.’ In: Laser Applications, Vol. 5, ed. by J.F. Ready, R.K. Erf (Academic Press, New York 1984)Google Scholar
  95. [10.52]
    H. Haragushi, B. Smith, S. Weeks, D.J. Johnson, J.D. Wineforder: Measurement of small volume flame temperature by the two-line atomic fluorescence method. Appl. Spectrosc. 31, 156 (1977)ADSGoogle Scholar
  96. R.G. Jolik, J.W. Daily: Two-line atomic fluorescence temperature measurements in flames: An experimental study. Appl. Opt. 21, 4158 (1982)ADSGoogle Scholar
  97. M.
    Aldén, P. Grafström, H. Lundberg, S. Svanberg: Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode-array detection. Opt. Lett. 8, 241 (1983)ADSGoogle Scholar
  98. [10.53]
    J. Pender, L. Hesselink: Phase conjugation in a flame. Opt. Lett. 10, 264 (1985)ADSGoogle Scholar
  99. P. Ewart, S.V. O’Leary: Detection of OH in a flame by degenerate fourwave mixing. Opt. Lett. 11, 279 (1986)ADSGoogle Scholar
  100. G. Hall, B.J. Whitaker: Laser-induced grating spectroscopy. J. Chem. Soc. Faraday Trans. 90, 1 (1994)Google Scholar
  101. B. Yip, P.M. Danehy, R.K. Hanson: Degenerate four-wave mixing temperature measurements in a flame. Opt. Lett. 17, 751 (1992)ADSGoogle Scholar
  102. P. Ewart, P.G.R. Smith, R.G. Williams: Imaging of trace species distributions by degenerate four-wave mixing: Diffraction effects, spatial resolution, and image referencing. Appl. Opt. 36, 5959 (1997)ADSGoogle Scholar
  103. [10.54]
    R.M. Osgood, S.R.I. Brueck, H.R. Schlossberg (eds.): Laser Diagnostics and Photochemical Processing for Semiconductor Devices (North-Holland, Amsterdam 1983)Google Scholar
  104. D. Bäuerle (ed.): Laser Processing and Diagnostics, Springer Ser. Chem. Phys., Vol.39 (Springer, Berlin, Heidelberg 1984)Google Scholar
  105. D. Bäuerle, K.L. Kompa, L.D. Laudé (eds.): Laser Processing and Diagnostics II (Physique, Les Ulis 1986)Google Scholar
  106. D. Bäuerle: Laser Processing and Chemistry, 2nd edn. (Springer, Berlin, Heidelberg 1996)Google Scholar
  107. L.D. Laudé, D. Bäuerle, M. Wautelet (eds.): Interfaces under Laser Irradiation, NATO ASI Series (Nijholl, Dordrecht 1987)Google Scholar
  108. W.G. Breiland, M.E. Coltrin, P. Ho (eds.): Laser-Based Studies of Chemical Vapor Deposition, Proc. SPIE-Int. Soc. Opt. Eng. 385, 146 (1983)Google Scholar
  109. [10.55]
    K.L. Kompa, J. Wanner: Laser Applications in Chemistry (Plenum, New York 1984)Google Scholar
  110. V.S. Letokhov (ed.): Laser Analytical Spectrochemistry (Hilger, Bristol 1986)Google Scholar
  111. T.R. Evans (ed.): Applications of Lasers to Chemical Problems (Wiley, New York 1982)Google Scholar
  112. S. Svanberg: Laser spectroscopy applied to energy, environmental and medical research. Phys. Scr. T23, 281 (1988); Appl. Phys. B 46, 271 (1988ADSGoogle Scholar
  113. [10.56]
    E.R. Pike, H.Z. Cummins (eds.): Photon Correlation and Light Beating Spectroscopy (Plenum, New York 1974)Google Scholar
  114. [10.57]
    L.E. Drain: The Laser Doppler Technique (Wiley, Chichester 1980)Google Scholar
  115. [10.58]
    E. Durst, A. Melling, J.H. Whitelaw: Principles and Practice of Laser-Doppler Anemometry, 2nd edn. (Academic Press, London 1981)Google Scholar
  116. [10.59]
    C.J. Dasch, J.A. Sell: Velocimetry in laminar and turbulent flows using the photothermal deflection effect with a transient grating. Opt. Lett. 11, 603 (1986), and references thereinADSGoogle Scholar
  117. R. Miles, C. Cohen, J. Connors, P. Howard, S. Huang, E. Markovitz, G. Russel: Velocity measurements by vibrational tagging and fluorescent probing of oxygen. Opt. Lett. 12, 861 (1987)ADSGoogle Scholar
  118. [10.60]
    B. Hiller, J.C. McDaniel, E.C. Rea Jr., R.K. Hanson: Laser-induced fluorescence technique for velocity field measurements in subsonic gas flows. Opt. Lett. 8, 474 (1983)ADSGoogle Scholar
  119. [10.61]
    U. Westblom, S. Svanberg: Imaging measurements of flow velocitites using laser-induced fluorescence. Phys. Scr. 31, 402 (1985)ADSGoogle Scholar
  120. U. Westblom, A. Aldén: Spatially resolved flow velocity measurement using laser-induced fluorescence from a pulsed laser. Opt. Lett. 14, 9 (1989)ADSGoogle Scholar
  121. [10.62]
    A.M.P.K. Taylor: Instrumentation for Flows with Combustion (Academic Press, London 1993)Google Scholar
  122. L. Laching, G. Wigley: Optical Diagnostics for Flow Processes (Plenum, New York 1995)Google Scholar
  123. R.J. Adrian, D.F.G. Durao, F. Durst, M.V. Heitor, M. Maeda, J.H. Whitelaw (eds.): Developments in Laser Techniques and Fluid Mechanics (Springer, Berlin, Heidelberg 1997)Google Scholar
  124. [10.63]
    E.J. McCartney: Absorption and Emission by Atmospheric Gases (Wiley, New York 1983)Google Scholar
  125. E.J. McCartney: Optics of the Atmosphere; Scattering by Molecules and Particles (Wiley, New York 1976)Google Scholar
  126. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Eattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtshinov, P. Varanasi: The HITRAN molecular database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transfer 60, 665 (1998)Google Scholar
  127. P.L. Hanst: QA Soft ′96, Database and quantitative analysis program for measurements of gases (Infrared Analysis Inc., Anaheim, CA 1996)Google Scholar
  128. [10.64]
    W. Bach, J. Pankrath, W. Kellogg (eds.): Man’s Impact on Climate (Elsevier, Amsterdam 1979)Google Scholar
  129. [10.65]
    R. Revelle: Carbon dioxide and world climate. Sci. Am. 247(2), 33 (1982)Google Scholar
  130. S.H. Schneider: Climate modeling. Sci. Am. 256(5), 72 (1987)ADSGoogle Scholar
  131. R.A. Houghton, G.W. Woodwell: Global climatic change. Sci. Am. 260(4), 18 (1989)Google Scholar
  132. S.H. Schneider: The changing climate. Sci. Am. 261(3), 38 (1989)Google Scholar
  133. B.J. Mason: The greenhouse effect. Contemp. Phys. 30, 417 (1989)ADSGoogle Scholar
  134. B.J. Mason: Predictions of climate changes caused by manmade emissions of greenhouse gases: A critical assessment. Contemp. Phys. 36, 299 (1995)ADSGoogle Scholar
  135. C.S. Zeregos, A.F. Bais: Solar Ultraviolet Radiation, Modelling, Measurements and Effects (Springer, Berlin, Heidelberg 1997)Google Scholar
  136. [10.66]
    T.E. Graedel, D.T. Hawkins, L.D. Claxton: Atmospheric Chemical Compounds: Sources, Occurrence, Bioassay (Academic Press, Orlando 1986)Google Scholar
  137. [10.67]
    R.M. Harrison, R. Perry (eds.): Handbook of Air Pollution Analysis, 2nd edn. (Chapman and Hall, London 1986)Google Scholar
  138. R.W. Baubel, D.B. Turner, A.C. Stem: Fundamentals of Air Pollution, 3rd edn. (Academic Press, London 1994)Google Scholar
  139. W. Michaelis: Air Pollution (Springer, Berlin, Heidelberg 1997)Google Scholar
  140. [10.68]
    R.P. Wayne: Chemistry of Atmospheres (Clarendon, Oxford 1985)Google Scholar
  141. [10.69]
    J.H. Seinfeld: Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York 1986)Google Scholar
  142. [10.70]
    D.A. Killinger, A. Mooradian (eds.): Optical and Laser Remote Sensing, Springer Ser. Opt. Sci., Vol. 39 (Springer, Berlin, Heidelberg 1983)Google Scholar
  143. [10.71]
    R.M. Measures: Laser Remote Sensing — Fundamentals and Applications (Wiley, New York 1984)Google Scholar
  144. [10.72]
    E.D. Hinkley (ed.): Laser Monitoring of the Atmosphere, Topics Appl. Phys., Vol. 14 (Springer, Berlin, Heidelberg 1976)Google Scholar
  145. [10.73]
    V. Zuev, I. Naats: Inverse Problems of Lidar Sensing of the Atmosphere, Springer Ser. Opt. Sci., Vol. 29 (Springer, Berlin, Heidelberg 1983)Google Scholar
  146. [10.74]
    R.M. Measures: In: Analytical Laser Spectroscopy, ed. by N. Omenetto (Wiley, New York 1979)Google Scholar
  147. D.K. Killinger, N. Menyuk: Laser remote sensing of the atmosphere. Science 235, 37 (1987)ADSGoogle Scholar
  148. W.B. Grant: Laser remote sensing techniques. In: [10.1] p. 565Google Scholar
  149. T. Kobayashi: Techniques for laser remote sensing of the environment. Remote Sens. Rev. 3, 1 (1987)zbMATHGoogle Scholar
  150. R.M. Measures (ed.): Laser Remote Chemical Analysis (Wiley-Interscience, New York 1988)Google Scholar
  151. E. Zanzottera: Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere. Crit. Rev. Anal. Chem. 21, 279 (1990)Google Scholar
  152. S. Svanberg: ‘Environmental monitoring using optical techniques.’ In: Applied Laser Spectroscopy, ed. by M. Inguscio, W. Demtröder (Plenum, New York 1990)Google Scholar
  153. C.Y. She: Remote measurements of atmospheric parameters: New applications of physics with lasers. Contemp. Phys. 31, 247 (1990)ADSGoogle Scholar
  154. S. Svanberg: ‘Atmospheric pollution monitoring using laser lidars.’ In: Optoelectronics for Environmental Sciences, ed. by Martellucci and A.N. Chester (Plenum Press, New York 1990) p. 3Google Scholar
  155. S. Svanberg: ‘Differential absorption lidar (DIAL).’ In: Air Monitoring by Spectroscopic Techniques, ed. by M. Sigrist, (Wiley, New York 1994)Google Scholar
  156. S. Martellucci, A.N. Chester (eds.): Optoelectronics for Environmental Science (Plenum, New York 1991)Google Scholar
  157. M.W. Sigrist (ed.): Air Monitoring by Spectroscopic Techniques (Wiley, New York 1994)Google Scholar
  158. A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (eds.): Advances in Atmospheric Remote Sensing with Lidar (Springer, Heidelberg 1997)Google Scholar
  159. [10.75]
    S. Svanberg: Lasers as probes for air and sea. Contemp. Phys. 21, 541 (1980)ADSGoogle Scholar
  160. [10.76]
    S. Svanberg: ‘Fundamentals of atmospheric spectroscopy.’ In: Surveillance of Environmental Pollution and Resources by Electromagnetic Waves, ed. by T. Lund (Reidel, Dordrecht 1978)Google Scholar
  161. [10.77]
    R.T. Menzies, R.K. Seals Jr.: Science 197, 1275 (1977)ADSGoogle Scholar
  162. [10.78]
    E.D. Hinkley: Laser spectroscopic instrumentation and techniques: Long path monitoring by resonance absorption. Opt. Quantum Electron. 8, 155 (1976)Google Scholar
  163. [10.79]
    H.I. Schiff, G.I. Macay, J. Bechara: ‘The use of tunable diode laser absorption spectroscopy for atmospheric measurements.’ In: Air Monitoring by Spectroscopic Techniques, ed. by M.W. Sigrist, Chemical Physics Series Vol. 127 (John Wiley, New York 1994) p. 239Google Scholar
  164. P. Werle: Spectroscopic trace gas analysis using semiconductor diode lasers. Spectrochim. Acta A 52, 805 (1996)ADSGoogle Scholar
  165. A.A. Kosterov, R.F. Curl, F.K. Tittel, G. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho: Methane concentration and isotopic composition measurements with a quantum-cascade laser. Opt. Lett. 24, 1762 (1999)ADSGoogle Scholar
  166. [10.80]
    U. Simon, C.E. Miller, C.C. Bradley, R.G. Hulet, R.F. Curl, F.K. Tittel: Difference frequency generation in AgGaS2 using single-mode diode laser pump sources. Opt. Lett. 18, 1062 (1993)ADSGoogle Scholar
  167. Th. Töpfer, K.P. Petrov, Y. Mine, D. Jundt, R.F. Curl, F.K. Tittel: Roomtemperature mid-infrared laser sensor for trace gas detection. Appl. Opt. 36, 8042 (1997)ADSGoogle Scholar
  168. M. Seiter, M.W. Sigrist: Compact gas sensor using a pulsed differencefrequency laser spectrometer. Opt. Lett. 24, 110 (1999)ADSGoogle Scholar
  169. [10.81]
    U. Gustafsson, J. Sandsten, S. Svanberg: Simultaneous detection of methane, oxygen and water vapour utilizing near-infrared diode lasers in conjunction with difference-frequency generation. Appl. Phys. B 71, 853 (2000)ADSGoogle Scholar
  170. [10.82]
    J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg: Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm. Appl. Phys. Lett. 76, 1234 (2000)ADSGoogle Scholar
  171. [10.83]
    C. Zimmermann, V. Vuletic, A. Hemmerich, T.W. Hänsch: All solid state laser source for tunable blue and ultraviolet radiation. Appl. Phys. Lett. 66, 238 (1995)Google Scholar
  172. [10.84]
    U. Gustafsson: PhD Thesis (Lund Institute of Technology, Lund 2000)Google Scholar
  173. [10.85]
    G.C. Bjorklund: Frequency modulation spectroscopy: a new method for measuring weak absorptions and dispersions. Opt. Lett. 6, 15 (1980)ADSGoogle Scholar
  174. N.H. Tran, R. Kachru, P. Pillet, H.B. van Linden van den Heuvell, T.F. Gallagher, J.P. Watjen: Frequency modulation spectroscopy with a pulsed dye laser: Experimental investigations of sensitivity and useful features. Appl. Opt. 23, 1353 (1984)Google Scholar
  175. M. Gehrtz, G.C. Bjorklund, E.A. Whittaker: Quantum-limited laser frequency modulation spectroscopy. J. Opt. Soc. Am. B 2, 1810 (1985)Google Scholar
  176. G.R. Janik, C.B. Carlisle, T.F. Gallagher: Two-tone frequency modulation spectroscopy. J. Opt. Soc. Am. B 3, 1070 (1986)ADSGoogle Scholar
  177. C.B. Carlisle, D.E. Cooper: Tunable-diode-laser frequency modulation spectroscopy using balanced homodyne detection. Opt. Lett. 14, 1306 (1989)ADSGoogle Scholar
  178. F.S. Pavone, M. Inguscio: Frequency-and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser. Appl. Phys. B 56, 118 (1993)ADSGoogle Scholar
  179. V.G. Avetisov, P. Kauranen: High-resolution absorption measurements using two-tone frequency-modulation spectroscopy with diode lasers. Appl. Opt. 36, 4043 (1997)ADSGoogle Scholar
  180. U. Gustafsson, G. Somesfalean, J. Alnis, S. Svanberg: Frequency modulation spectroscopy with blue diode lasers, Appl. Opt. 39, 3774 (2000)ADSGoogle Scholar
  181. [10.86]
    M.C. Alarcon, H. Ito, H. Inaba: All-optical remote sensing of city gas through CH4 gas absorption employing a low-loss optical fibre link and an InGaAsP light emitting diode in the near-infrared region. Appl. Phys. B 43, 79 (1987)ADSGoogle Scholar
  182. [10.87]
    J.J. Degnan, NASA Goddard Space Flight Centre, CLEO Europe, Sept. 13-18 and Glasgow 1998Google Scholar
  183. J.J. Degnan: ‘Satellite laser ranging and very long baseline interferometry.’ In: Encyclopedia of Earth Sciences, Vol. 2, ed. by M. Kauffman (Simon and Schuster Macmillan, New York 1996) p. 935Google Scholar
  184. J.J. Degnan: ‘Millimeter accuracy satellite laser ranging: A review.’ In: Contributions of Space Geodesy to Geodynamics: Technology, ed. by D.E. Smith, D.L. Turcotte, AGU Geodynamics Series, Vol. 25 (1993) p. 133Google Scholar
  185. [10.88]
    M.L. Chanin: Rayleigh and resonance sounding of the stratosphere and mesosphere. In: [10.70] p. 192Google Scholar
  186. C. Granier, G. Megie: Daytime lidar measurement of the mesospheric sodium layer. Planet. Space Sci. 30, 169 (1982)ADSGoogle Scholar
  187. C. Granier, J.P. Jegou, G. Megie: Resonant lidar detection of Ca and Ca+ in the upper atmosphere. Geophys. Res. Lett. 12, 655 (1985)ADSGoogle Scholar
  188. K.H. Fricke, U. von Zahn: Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar. J. Atmos. Terr. Phys. 47, 499 (1985)ADSGoogle Scholar
  189. U. von Zahn, P. von der Gathen, G. Hansen: Forced release of sodium from upper atmosphere dust particles. Geophys. Res. Lett. 14, 76 (1987)ADSGoogle Scholar
  190. L.A. Thompson, C.S. Gardner: Laser guidestar experiment at Mauna Kea Observatory for adaptive imaging in astronomy. Nature 328, 229 (1987)ADSGoogle Scholar
  191. C.Y. She, J.R. Yu: Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region. Geophys. Res. Lett. 21, 1771 (1994)ADSGoogle Scholar
  192. M. Alpers, J. Hoffner, U. von Zahn: Upper atmosphere Ca and Ca+ at mid-latitudes. Geophys. Res. Lett. 22, 263 (1995)Google Scholar
  193. U. von Zahn, J. Hoffner: Mesopause temperature profiling by potassium lidar. Geophys. Res. Lett. 23, 141 (1996)ADSGoogle Scholar
  194. [10.89]
    W. Happer, G. MacDonald, C. Max, F.J. Dyson: Atmospheric-turbulence compensation by resonant optical backscattering from the sodium layer in the upper atmosphere. J. Opt. Soc. Am. A 11, 263 (1994)ADSGoogle Scholar
  195. M.J. Beran, J. Oz-Vogt: ‘Imaging through turbulence in the atmosphere.’ In: Progress in Optics XXXIII, ed. by E. Wolf (Elsevier, Amsterdam 1994) p. 321Google Scholar
  196. M.C. Roggemann, B.M. Welsh, R.Q. Fugate: Improving the resolution of ground-based telescopes. Rev. Mod. Phys. 69, 437 (1997)ADSGoogle Scholar
  197. [10.90]
    Y.F. Arshinov, S.M. Bobrovnikov, V.E. Zuev, V.M. Mitev: Atmospheric temperature measurements using a pure rotational Raman lidar. Appl. Opt. 22, 2984 (1983)ADSGoogle Scholar
  198. D. Nedeljkovic, A. Hauchecorne, M.L. Chanin: Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km. IEEE Trans. Geosci. Remote Sens. 31, 90 (1993)ADSGoogle Scholar
  199. A. Behrendt, J. Reichart: Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator. Appl. Opt. 39, 1372 (2000)ADSGoogle Scholar
  200. [10.91]
    J. Reichardt, U. Wandinger, M. Serwasi, C. Weitkamp: Combined Raman lidar for aerosol, ozone and moisture measurements. Opt. Eng. 35, 1457 (1996)ADSGoogle Scholar
  201. [10.92]
    L.J. Radziemski, T.R. Loree, D.A. Cremers, N.M. Hoffman: Time-resolved laser-induced breakdown spectrometry of aerosols. Anal. Chem. 55, 1246 (1983)Google Scholar
  202. J.A. Millard, R.H. Dalling, L.J. Radziemski: Time-resolved laser-induced breakdown spectrometry for the rapid determination of beryllium in beryllium-copper alloys. Appl. Spectrosc. 40, 491 (1986)ADSGoogle Scholar
  203. D.J. Cremers, L.J. Radziemski: Laser plasmas for chemical analysis. In: [10.1] p. 351Google Scholar
  204. [10.93]
    K. Fredriksson, B. Galle, K. Nyström, S. Svanberg: Mobile lidar system for environmental probing. Appl. Opt. 20, 4181 (1981)ADSGoogle Scholar
  205. [10.94]
    K. Fredriksson, I. Lindgren, S. Svanberg, G. Weibull: Measurements of the emission from industrial smoke stacks using laser radar techniques. Göteborg Institute of Physics Reports GIPR-121 (CTH, Göteborg 1976)Google Scholar
  206. [10.95]
    H. Edner, K. Fredriksson. A. Sunesson, S. Svanberg, L. Unéus, W. Wendt: Mobile remote sensing system for atmospheric monitoring. Appl. Opt. 26, 4330 (1987)ADSGoogle Scholar
  207. [10.96]
    D.J. Brassington: Measurement of the SO2 absorption spectrum between 297 and 316 nm using a tunable dye laser. Lab. Note No. RD/L/N 184/79 (Central Electricity Res. Labs., Leatherhead 1979)Google Scholar
  208. D.J. Brassington: Sulphur dioxide absorption cross-section measurement from 290 nm to 317 nm. Appl. Opt. 20, 3774 (1981)ADSGoogle Scholar
  209. [10.97]
    P. Weibring, M. Andersson, H. Edner, S. Svanberg: Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements. Appl. Phys. B 66, 383 (1998)ADSGoogle Scholar
  210. [10.98]
    H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci: Total fluxes of sulphur dioxide from the Italian volcanoes Etna, Stromboli and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy. J. Geophys. Res. 99, 18 827 (1994)ADSGoogle Scholar
  211. [10.99]
    P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano: Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC). Appl. Phys. B 67, 419 (1998)ADSGoogle Scholar
  212. P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani: Optical monitoring of volcanic sulphur dioxide emissions — Comparison between four different remote sensing techniques, Opt. Lasers Eng. 37, 267 (2002)Google Scholar
  213. S. Svanberg: Geophysical gas monitoring using optical techniques: Volcanoes, geothermal fields and mines. Opt. Lasers Eng. 37, 245 (2002)Google Scholar
  214. [10.100]
    H. Edner, G.W. Faris, A. Sunesson, S. Svanberg: Atmospheric atomic mercury monitoring using differential absorption lidar techniques. Appl. Opt. 28, 921 (1989)ADSGoogle Scholar
  215. R. Ferrara, B.E. Maserti, H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder: Mercury emissions into the atmosphere from a chlor-alkali complex measured with the lidar technique. Atmos. Environ. 26A, 1253 (1992)Google Scholar
  216. [10.101]
    H. Edner, G.W. Faris, A. Sunesson, S. Svanberg, J.O. Bjarnason, K.H. Sigurdsson, H. Kristmansdottir: Lidar search for atomic mercury in Icelandic geothermal fields. J. Geophys. Res. 96, 2977 (1991)ADSGoogle Scholar
  217. [10.102]
    H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. De Liso, R. Ferrara, B.E. Maserti: Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields. J. Geophys. Res. 97, 3779 (1992)ADSGoogle Scholar
  218. [10.103]
    H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, B.E. Maserti, R. Bargagli: Atmospheric mercury mapping in a cinnabar mining area. Sci. Total Environ. 133, 1 (1993)Google Scholar
  219. R. Ferrari, B.M. Maserti, M. Andersson, H. Edner, P. Ragnarson, S. Svanberg, A. Hernandez: Atmospheric mercury concentration and fluxes in the Almaden district (Spain). Atmos. Environ. 32, 3897 (1998)Google Scholar
  220. [10.104]
    R. Ebinghaus, R.R. Turner, L.D. de Lacerda, O. Vasiliev, W. Salomons (eds.): Mercury Contaminated Sites (Springer, Berlin, Heidelberg 1999)Google Scholar
  221. [10.105]
    M. Aldén, H. Edner, S. Svanberg: Laser monitoring of atmospheric NO using ultraviolet differential-absorption techniques. Opt. Lett. 7, 543 (1982)ADSGoogle Scholar
  222. [10.106]
    K.W. Rothe, U. Brinkmann, H. Walther: Appl. Phys. 3, 115 (1974)ADSGoogle Scholar
  223. W.R. Grant, R.D. Hake Jr., E.M. Liston, R.C. Robbins, E.K. Proctor Jr.: Calibrated remote measurement of NO2 using the differential absorption backscatter technique. Appl. Phys. Lett. 24, 550 (1974)ADSGoogle Scholar
  224. [10.107]
    T.D. Gardiner, R.A. Robinson, M.J.T. Milton, P.T. Woods: Infrared differential absorption lidar for trace gas measurement. Proc. Int. Laser Sensing Symposium, Fukui, Japan, September 6-8 1999, p. 173Google Scholar
  225. P. Weibring, J.N. Smith, H. Edner, S. Svanberg: Differential absorption lidar system based on a frequency agile optical parametric oscillator for multi-component chemical analysis of gas mixtures. Proc. Int. Laser Radar Conference, Vichy, France, July 10-14 (2000)Google Scholar
  226. P. Weibring, H. Edner, S. Svanberg: Versatile mobile lidar system for environmental monitoring. Appl. Opt. 42, 3583 (2003)ADSGoogle Scholar
  227. [10.108]
    H. Edner, S. Svanberg, L. Unéus, W. Wendt: Gas correlation lidar. Opt. Lett. 9, 493 (1984)ADSGoogle Scholar
  228. [10.109]
    A. Minato, T. Kobayashi, N. Sugimoto: Laser long-path absorption technique for measuring methane using gas correlation method. J. Appl. Phys. 37, 3610 (1998)Google Scholar
  229. [10.110]
    H. Edner, P. Ragnarson, E. Wallinder: Industrial emission control using lidar techniques. Environ. Sci. Technol. 29, 330 (1995)Google Scholar
  230. [10.111]
    J. Pelon, G. Megie: Ozone monitoring in the troposphere and lower stratosphere: Evaluation and operation of a ground-based lidar station. J. Geophys. Res. 87, 4947 (1982)ADSGoogle Scholar
  231. G.J. Megie, G. Ancellet, J. Pelon: Lidar, measurements of ozone vertical profiles. Appl. Opt. 24, 3454 (1985)ADSGoogle Scholar
  232. O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe: Differential absorptionlidar measurement of tropospheric ozone with excimer-Raman hybrid laser. Opt. Lett. 8, 347 (1983)ADSGoogle Scholar
  233. O. Uchino, M. Maeda, H. Yamamura, M. Hirono: Observation of stratospheric vertical ozone distribution by a XeCl lidar. J. Geophys. Res. 88, 5273 (1983)ADSGoogle Scholar
  234. J. Werner, K.W. Rothe, H. Walther: Monitoring of the stratospheric ozone layer by laser radar. Appl. Phys. B 32, 113 (1983)ADSGoogle Scholar
  235. E.V. Browell et al.: Ozone and aerosol distributions and air mass characteristics over the south Atlantic basin during the burning season. J. Geophys. Res. 101, 24 043 (1996)ADSGoogle Scholar
  236. [10.112]
    M.P. McCormick: Lidar measurements of Mount St. Helens effluents. Opt. Eng. 21, 340 (1982)ADSGoogle Scholar
  237. M.P. McCormick, T.J. Swisser, W.H. Fuller. W.H. Hunt, M.T. Osborn: Airborne and ground-based lidar measurements of the El Chichon stratospheric aerosol from 90° N to 56° S. Geofisica Internacional 23-2, 187 (1984)Google Scholar
  238. M.R. Rampino, S. Self: The atmospheric effects of El Chichon. Sci. Am. 250(1), 34 (1984)Google Scholar
  239. E.E. Uthe: Application of surface-based and airborne lidar systems for environmental monitoring. J. Air Pollut. Control Assoc. 33, 1149 (1983)Google Scholar
  240. G. Fiocco, D. Fua, G. Visconti (eds.): The Mount Pinatubo Eruption — Effects on the Atmosphere and Climate. NATO ASI Series, Vol. 142 (Springer, Heidelberg 1996)Google Scholar
  241. [10.113]
    C.L. Korb, B.M. Gentry, C.Y. Weng: Edge technique: Theory and application to the lidar measurement of atmospheric wind. Appl. Opt. 31, 4202 (1992)ADSGoogle Scholar
  242. C. Flesia, C.L. Korb: Theory of the double-edge molecular technique for Doppler lidar wind measurement. Appl. Opt. 38, 432 (1999)ADSGoogle Scholar
  243. [10.114]
    J.S. Friedman, C.A. Tepley, P.A. Catleberg, H. Roe: Middle-atmospheric Doppler lidar using an iodine-vapour edge filter. Opt. Lett. 22, 1648 (1997)ADSGoogle Scholar
  244. [10.115]
    P. Kauranen, S. Andersson-Engels, S. Svanberg: Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system. Appl. Phys. B 53, 260 (1991)ADSGoogle Scholar
  245. [10.116]
    R.M. Huffaker, R.M. Hardesty: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE 84, 181 (1996)Google Scholar
  246. J.M. Vaughan: Coherent laser spectroscopy and Doppler LIDAR sensing in the atmosphere. Phys. Scr. T78, 73 (1998)Google Scholar
  247. [10.117]
    D.M. Winkler, R.C. Couch, M.P. McCormick: Proc. IEEE 84, 164 (1996)Google Scholar
  248. D.M. Winker, M.P. McCormick: Aerosol and cloud sensing with the Lidar in Space Technology experiment (LITE). SPIE 2310, 98 (1994)ADSGoogle Scholar
  249. E.V. Browell, S. Ismail, W.B. Grant: Differential absorption lidar (DIAL) measurements from air and space. Appl. Phys. B 67, 399 (1998)ADSGoogle Scholar
  250. [10.118]
    Y. Sasano, K. Asai, N. Sugimoto, Y. Kawamura, K. Tatsumi, T. Imai: NASDA mission demonstration satellite lidar project and science. Proc. SPIE-Int. Soc. Opt. Eng. 3504, 2 (1998)ADSGoogle Scholar
  252. [10.119]
    D.H. Hercules (ed.): Fluorescence and Phosphorescence Analysis (Interscience, New York 1966)Google Scholar
  253. P. Pringsheim: Fluorescence and Phosphorescence (Interscience, New York 1949)Google Scholar
  254. [10.120]
    J.B. Birks: Photophysics of Aromatic Molecules (Wiley, New York 1970)Google Scholar
  255. [10.121]
    I. Berlman: Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd edn. (Academic Press, New York 1971)Google Scholar
  256. [10.122]
    J.R. Lakowicz: Principles of Fluorescence Spectroscopy (Plenum, New York 1983)Google Scholar
  257. E.L. Wehry (ed.): Modern Fluorescence Spectroscopy, Vols. 1 and 2 (Plenum, New York 1976)Google Scholar
  258. [10.123]
    J.R. Lakowicz (ed.): Topics in Fluorescence Spectroscopy (Plenum, New York 1994)Google Scholar
  259. J.R. Lakowicz (ed.): Topics in Fluorescence Spectroscopy, Vol. 1: Techniques, Vol. 2: Principles, Vol. 3: Biochemical Applications, Vol. 4: Probe Design and Chemical Sensing, Vol. 5: Nonlinear and Two-Photon-Induced Fluorescence (Plenum, New York 1991-1997)Google Scholar
  260. O.S. Wolfbeis (ed.): Fluorescence Spectroscopy, New Methods and Applications (Springer-Verlag, Heidelberg 1992)Google Scholar
  261. [10.124]
    L. Celander, K. Fredriksson, B. Galle, S. Svanberg: Investigation of laserinduced fluorescence with application to remote sensing of environmental parameters. Göteborg Institute of Physics Reports GIPR-149 (CTH, Göteborg 1978)Google Scholar
  262. S. Svanberg: ‘Environmental diagnostics.’ In: Trends in Physics, ed. by M.M. Woolfson (Hilger, Bristol 1978) p. 119Google Scholar
  263. [10.125]
    Govindjee, R. Govindjee: The absorption of light in photosynthesis. Sci. Am. 231(6), 68 (1974)Google Scholar
  264. D.C. Youvan, B.L. Marrs: Molecular mechanisms of photosynthesis. Sci. Am. 256(6), 42 (1987)Google Scholar
  265. H.K. Lichtenthaler, U. Rinderle: The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit. Rev. Anal. Chem. 19, Suppl. 1, S29 (1988)Google Scholar
  266. A.J. Hoff, J. Deisenhofer: Photophysics of photosynthesis. Phys. Rep. 287, 1 (1997)ADSGoogle Scholar
  267. A.R. Young, L.O. Björn, J. Moan, W. Nultsch (eds.): Environmental UV Photobiology (Plenum, New York 1993)Google Scholar
  268. K.C. Smith (ed.): The Science of Photobiology, 2nd edn. (Plenum, New York 1989)Google Scholar
  269. F.E. Hoge, R.N. Swift: Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occuring pigments. Appl. Opt. 20, 3197 (1981)ADSGoogle Scholar
  270. F.E. Hoge, R.N. Swift, J.K. Yungel: Active-passive airborne ocean color measurement 2: Applications. Appl. Opt. 25, 48 (1986)ADSGoogle Scholar
  271. [10.126]
    R.A. O’Neill, L. Buja-Bijunas, D.M. Rayner: Field performance of a laser fluorosensor for the detection of oil spills. Appl. Opt. 19, 863 (1980)ADSGoogle Scholar
  272. G.A. Capelle, L.A. Franks, D.A. Jessup: Aerial testing of a KrF laserbased fluorosensor. Appl. Opt. 22, 3382 (1983)ADSGoogle Scholar
  273. H. Amann: Laser spectroscopy for monitoring and research in the ocean. Phys. Scr. T78, 68 (1998)ADSGoogle Scholar
  274. [10.127]
    H.H. Kim: Airborne laser bathymetry. Appl. Opt. 16, 45 (1977)ADSGoogle Scholar
  275. J. Banic, S. Sizgoric, R. O’Neill: Airborne scanning lidar bathymeter measures water depth. Laser Focus 23(2), 40 (1987)Google Scholar
  276. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström: Underwater laser-radar experiments for bathymetry and fish-school detection. Göteborg Institute of Physics Reports GIPR-162 (CTH, Göteborg 1978)Google Scholar
  277. [10.128]
    H. Edner, J. Johansson, S. Svanberg, E. Wallinder: Fluorescence lidar mulicolor imaging of vegetation. Appl. Opt. 33, 2471 (1994)ADSGoogle Scholar
  278. [10.129]
    S. Svanberg: Fluorescence lidar monitoring of vegetation status. Phys. Scr. T58, 79 (1995)ADSGoogle Scholar
  279. S. Svanberg: ‘Laser fluorescence spectroscopy in environmental monitoring.’ In: Optoelectronic for Environmental Science, S. Martellucci, ed. by A.N. Chester (Plenum Press, New York 1990) p. 15Google Scholar
  280. J. Johansson, M. Andersson, H. Edner, J. Mattsson, S. Svanberg: Remote fluorescence measurements of vegetation spectrally resolved and by multicolour fluorescence imaging. J. Plant Physiology 148, 632 (1996)Google Scholar
  281. T. Fujii (ed.): Recent Advances in Laser Remote Sensing (Marcel Dekker 2003)Google Scholar
  282. [10.130]
    V. Raimondi, G. Cecchi, L. Pantani, R. Chiari: Fluorescence lidar monitoring of historical buildings. Appl. Opt. 37, 1089 (1996)ADSGoogle Scholar
  283. P. Weibring, M. Andersson, G. Cecchi, H. Edner, J. Johansson, L. Pantani, V. Raimondi, B. Sundnér, S. Svanberg: A preliminary experiment on the remote sensing of historical monuments by fluorescence lidar. Proc. SPIE-Int. Soc. Opt. Eng. 3222, 372 (1997)ADSGoogle Scholar
  284. [10.131]
    P. Weibring, Th. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, L. Pantani: Fluorescence lidar imaging of historical monuments. Appl. Opt. 40, 6111 (2001)ADSGoogle Scholar
  285. D. Lognoli, G. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, S. Svanberg: Fluorescence lidar imaging of the Parma Cathedral and Batistery, Appl. Physics B 76, 1 (2003)Google Scholar
  286. [10.132]
    S. Montán, S. Svanberg: A system for industrial surface monitoring utilizing laser-induced fluorescence. Appl. Phys. B 38, 241 (1985)ADSGoogle Scholar
  287. [10.133]
    S. Montán, S. Svanberg: Industrial applications of laser-induced fluorescence. L.I.A. ICALEO 47, 153 (1985)Google Scholar
  288. P.S. Andersson, S. Montán, S. Svanberg: Remote sample characterization based on fluorescence monitoring. Appl. Phys. B 44, 19 (1987)ADSGoogle Scholar
  289. [10.134]
    E.S. Yeung: In: Adv. Chromatography, Vol.23 (Dekker, New York 1984) Chap. 1Google Scholar
  290. E.S. Yeung: In: Microcolumn Separations: Columns, Instrumentation and Ancillary Techniques, ed. by M.V. Novotny, D. Ishii (Elsevier, Amsterdam 1985) p. 135Google Scholar
  291. E. Gassman, J.E. Kuo, R.N. Zare: Electrokinetic separation of chiral compounds. Science 230, 813 (1985)ADSGoogle Scholar
  292. M.C. Roach, P.H. Gozel, R.N. Zare: Determination of methotrexate and its major metabolite, 7-hydroxylmethotrexate, using capillary zone electrophoresis and laser-induced fluorescence detection. J. Chromatography 426, 129 (1988)Google Scholar
  293. J.P. Landers: Handbook of Capillary Electrophoresis, 2nd edn. (Springer-Verlag, Heidelberg 1996)Google Scholar
  294. [10.135]
    S. Nilsson, J. Johansson, M. Mecklenburg, S. Birnbaum, S. Svanberg, K.-G. Wahlund, K. Mosbach, A. Miyabayashi, P.-O. Larsson: Real-time fluorescence imaging of capillary electrophoresis: Separation of nucleic acids. J. Cap. Elec. 22, 46 (1995)Google Scholar
  295. [10.136]
    E.R. Menzel: Detection of latent fingerprints by laser-excited luminescence. Anal. Chem. 61, 557A (1989)Google Scholar
  296. E.R. Menzel: Laser Detection of Fingerprints, 2nd edn. (Marcel Dekker, New York 1999)Google Scholar
  297. E.R. Menzel: ‘Fluorescence in forensic science.’ In: Encyclopedia of Analytical Chemistry (Wiley, New York 2000)Google Scholar
  298. [10.137]
    J.S. McCormack: Remote optical measurements of temperature using fluorescent materials. Electron. Lett. 17, 630 (1981)ADSGoogle Scholar
  299. K.T.V. Grattan, Z.Y. Zhang: Fibre-Optic Fluorescence Thermometry (Chapman & Hall, London 1995)Google Scholar
  300. [10.138]
    J.C. Hamilton, R.J. Anderson: In situ Raman spectroscopy of Fe-18Cr-3Mo(100) surface oxidation. Sandia Combustion Research Program Annual Rept. (Sandia, Livermore, CA 1984)Google Scholar
  301. [10.139]
    M. Fleischmann, P.J. Hendra, A.J. McQuillan: Raman spectra of pyridine absorbed at a silver electrode. Chem. Phys. Lett. 26, 163 (1974)ADSGoogle Scholar
  302. [10.140]
    R.K. Chang, T.E. Furtak: Surface-Enhanced Raman Scattering (Plenum, New York 1982)Google Scholar
  303. [10.141]
    M. Moskovits: Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783 (1985)ADSGoogle Scholar
  304. [10.142]
    A. Otto, I. Mrozek, H. Grabhorn, W. Akemann: Surface-enhanced Raman scattering. J. Phys. Cond. Matter 4, 1143 (1992)ADSGoogle Scholar
  305. K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, M.S. Feld: Surface-enhanced Raman scattering: A new tool for biomedical spectroscopy. Current Science 77, 915 (1999)Google Scholar
  306. W. Suetaka: Surface Infrared and Raman Spectroscopy (Plenum, New York 1995)Google Scholar
  307. [10.143]
    Y.R. Shen: Annu. Rev. Mater. Sci. 16, 69 (1986)ADSGoogle Scholar
  308. [10.144]
    Y.R. Shen: ‘Applications of optical second-harmonic generation in surface science.’ In: Chemistry and Structure at Interfaces, ed. by R.B. Hall, A.B. Ellis (Verlag-Chemie, Weinheim 1986) p. 151Google Scholar
  309. [10.145]
    W. Yen, P.M. Selzer (eds.): Laser Spectroscopy of Solids, 2nd edn. Topics Appl. Phys., Vol. 49 (Springer, Berlin, Heidelberg 1989)Google Scholar
  310. W.M. Yen (ed.): Laser Spectroscopy II, Topics Appl. Phys., Vol. 65 (Springer, Berlin, Heidelberg 1989)Google Scholar
  311. [10.146]
    F.R. Aussenegg, A. Leitner, M.E. Lippitsch (eds.): Surface Studies with Lasers, Springer Ser. Chem. Phys., Vol.33 (Springer, Berlin, Heidelberg 1983)Google Scholar
  312. [10.147]
    K. Kleinermanns, J. Wolfrum: Laser Chemistry — What is Its Current Status?, Angew. Chem. Int. Ed. Engl. 26, 38 (1987)Google Scholar
  313. [10.148]
    A.M. Ronn: Laser chemistry. Sci. Am. 240(5), 102 (1979)Google Scholar
  314. D.L. Andrews: Lasers in Chemistry, 3rd edn. (Springer, Berlin, Heidelberg 1997)Google Scholar
  315. P. Brumer, M. Shapiro: Laser control of chemical reactions. Sci. Am. 272(3), 34 (1995)Google Scholar
  316. S. Svanberg: Chemical sensing with laser spectroscopy, Sensors and Actuators B 33, 1 (1996)Google Scholar
  317. [10.149]
    V.S. Letokhov: Nonlinear Laser Chemistry, Springer Ser. Chem. Phys., Vol. 22 (Springer, Berlin, Heidelberg 1983)Google Scholar
  318. [10.150]
    E. Grunvald, D.F. Dever, P.M. Keeher: Megawatt Infrared Laser Chemistry (Wiley, New York 1978)Google Scholar
  319. [10.151]
    A. Zewail (ed): Advances in Laser Chemistry, Springer Ser. Chem. Phys., Vol. 3 (Springer, Berlin, Heidelberg 1978)Google Scholar
  320. [10.152]
    V.S. Letokhov: Laser-induced chemistry — basic nonlinear processes and applications. In: [10.2] p. 237Google Scholar
  321. [10.153]
    R.L. Woodin, A. Kaldor (eds.): Applications of Lasers to Industrial Chemistry. Proc. SPIE-Int. Soc. Opt. Eng. 458 (SPIE, Bellingham, WA 1984)Google Scholar
  322. [10.154]
    J.A. Paisner, R.W. Solarz: Resonance photoionization spectroscopy. In: [10.1] p. 175Google Scholar
  323. J.A. Paisner: Atomic vapor laser isotope separation. In: [10.2] p. 253Google Scholar
  324. [10.155]
    V.S. Letokhov: Laser separation of isotopes. Annu. Rev. Phys. Chem. 28, 133 (1977)ADSGoogle Scholar
  325. V.S. Letokhov: Laser isotope separation. Nature 277, 605 (1979)ADSGoogle Scholar
  326. J.L. Lyman: Laser-induced molecular dissociation. Applications in isotope separation and related processes. In: [10.1] p. 417Google Scholar
  327. P.T. Greenland: Laser isotope separation. Contemp. Phys. 31, 405 (1990)ADSGoogle Scholar
  328. [10.156]
    H.G. Kuhn: Atomic Spectra (Longmans, London 1962)Google Scholar
  329. [10.157]
    N. Bloembergen, E. Yablonovitch: ‘Collisionless multiphoton dissociation of SF6: A statistical thermodynamic process.’ In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977)Google Scholar
  330. [10.158]
    R.V. Ambartzumian, V.S. Letokhov, G.N. Makarov, A.A. Puretsky: Laser separation of nitrogen isotopes. JETP Lett. 17, 63 (1973); JETP Lett. 15, 501 (1972ADSGoogle Scholar
  331. [10.159]
    J.-L. Boulnois: Photophysical processes in recent medical laser developments: A review. Lasers Med. Sci. 1, 47 (1986)Google Scholar
  332. J.-L. Boulnois: ‘Photophysical processes in laser-tissue interactions.’ In: Laser Applications in Cardiovascular Diseases, ed. by R. Ginsburg (Futura, New York 1987)Google Scholar
  333. [10.160]
    D. Sliney, M. Wolbarsht: Safety with Lasers and Other Optical Sources (Plenum, New York 1980)Google Scholar
  334. ANSI: Laser Standards designed Z 136.1 — 1973 (American National Standards Institute, Washington 1983)Google Scholar
  335. B. Anderberg, M.L. Wolbarsht: Laser Weapons — Dawn of a New Military Age (Plenum, New York 1992)Google Scholar
  336. [10.161]
    L. Goldman (ed.): The Biomedical Laser: Technology and Clinical Applications (Springer, Berlin, Heidelberg 1981)Google Scholar
  337. [10.162]
    S. Martellucci, A.N. Chester: Laser Photobiology and Photomedicine (Plenum, New York 1985)Google Scholar
  338. A.N. Chester, S. Martellucci, A.M. Scheggi (eds.): Laser Systems for Photobiology and Photomedicine (Plenum, New York 1991)Google Scholar
  339. [10.163]
    M.L. Wolbarsht: Laser Applications in Medicine and Biology (Plenum, New York 1991)Google Scholar
  340. M.W. Berns: Laser surgery. Sci. Am. 264(6), 58 (1991)Google Scholar
  341. A. Katzir: Lasers and Optical Fibers in Medicine (Academic Press, San Diego 1993)Google Scholar
  342. A.J. Welch, M. van Gemert: Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York 1995)Google Scholar
  343. J.D. Bronzino (ed.): The Biomedical Engineering Handbook (CRC Press, Boca Raton 1995)Google Scholar
  344. M. Niemz: Laser-Tissue Interactions (Springer, Berlin, Heidelberg 1996)Google Scholar
  345. T. Karu: The Science of Low Power Laser Therapy (Gordon & Breach/IPD 1998)Google Scholar
  346. [10.164]
    M. v. Allmen, A. Blatter: Laser-Beam Interactions with Materials, 2nd edn. (Springer, Berlin, Heidelberg 1995)Google Scholar
  347. D. Elliott: Ultraviolet Laser Applications and Technology (Academic Press, New York 1995)Google Scholar
  348. J. Mazumder, A. Kar: Theory and Application of Laser Chemical Vapor Deposition (Plenum, New York 1995)Google Scholar
  349. D. Bäuerle: Laser Processing and Chemistry, 2nd edn. (Springer, Berlin, Heidelberg 1996)Google Scholar
  350. W.W. Duley: UV Lasers: Effects and Applications in Material Science (Cambridge University Press, Cambridge 1996)Google Scholar
  351. J.C. Miller, R.F. Haglund: Laser Ablation and Desorption (Academic Press, San Diego 1998)Google Scholar
  352. [10.165]
    J.A. Parrish, T.F. Deutsch: Laser photomedicine. IEEE J. Quantum Electron. QE-20, 1386 (1984)ADSGoogle Scholar
  353. [10.166]
    T.J. Dougherty: In: CRC Critical Reviews in Oncology/Hematology, ed. by S. Davis (CRC, Boca Raton, FL 1984)Google Scholar
  354. [10.167]
    Y. Hayata, T.J. Dougherty (eds.): Lasers and Hematoporphyrin Derivative in Cancer (Ikaku-shoin, Tokyo 1983)Google Scholar
  355. [10.168]
    R. Pratesi, C.A. Sacchi (eds.): Lasers in Photomedicine and Photobiology, Springer Ser. Opt. Sci., Vol.22 (Springer, Berlin, Heidelberg 1980)Google Scholar
  356. [10.169]
    A. Andreoni, R. Cubeddu (eds.): Porphyrins in Tumor Phototherapy (Plenum, New York 1984)Google Scholar
  357. [10.170]
    Ch.J. Gomer (ed.): Proc. Clayton Foundation Conf. on Photodynamic Therapy (Childrens Hospital, Los Angeles 1987)Google Scholar
  358. [10.171]
    S.L. Marcus: ‘Photodynamic therapy: Clinical status, potential and needs.’ In: Photodynamic Therapy of Human Cancer, ed. by C. Gomer (SPIE Press, Bellingham 1990) p. 1Google Scholar
  359. [10.172]
    L.I. Grossweiner: The Science of Phototherapy (CRC Press, Boca Raton 1994)Google Scholar
  360. [10.173]
    T.J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng: Photodynamic therapy, J. Nat. Cancer Inst. 90, 889 (1998)Google Scholar
  361. [10.174]
    S. Svanberg: Medical diagnostics using laser-induced fluorescence. Phys. Scr. T17, 469 (1987)ADSGoogle Scholar
  362. [10.175]
    S. Svanberg: Medical applications of laser spectroscopy. Phys. Scr. T26, 90 (1989)ADSGoogle Scholar
  363. [10.176]
    A.E. Profio, D.R. Doiron, O.J. Balchum, G.C. Huth: Fluorescence bronchoscopy for localization of carcinoma in Situ. Med. Phys. 10, 35 (1983)Google Scholar
  364. [10.177]
    H. Kato, D.A. Cortese: Early detection of lung cancer by means of hematoporphyrin derivative fluorescence and laser photoradiation. Clinics in Chest Medicine 6, 237 (1985)Google Scholar
  365. [10.178]
    J.H. Kinsey, D.A. Cortese: Endoscopic system for simultaneous visual examination and electronic detection of fluorescence. Rev. Sci. Instrum. 51, 1403 (1980)ADSGoogle Scholar
  366. [10.179]
    P.S. Andersson, S.E. Karlsson, S. Montán, T. Persson, S. Svanberg, S. Tapper: Fluorescence endoscopy instrumentation for improved tissue characterization. Med. Phys. 14, 633 (1987)Google Scholar
  367. [10.180]
    L. Baert, R. Berg, B. Van Damme, M.A. d’Hallewin, J. Johansson, K. Svanberg, S. Svanberg: Clinical fluorescence diagnosis of human bladder carcinoma following low-dose photofrin injection. J. Urology 41, 322 (1993)Google Scholar
  368. S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg: Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence. IEEE J. Quantum Electron. QE-26, 2207 (1990)ADSGoogle Scholar
  369. C. Eker, S. Montán, E. Jamarillo, K. Koizumi, C. Rubio, S. Andersson-Engels, K. Svanberg, S. Svanberg, P. Slezak: Clinical spectral characterization of colonic mucosial lesions using autofluorescence and δ-aminolevulinic acid sensitization. Gut 44, 511 (1999)Google Scholar
  370. A.E. Profio: ‘Endoscopic fluorescence detection of early lung cancer.’ In: Optical Methods for Tumor Treatment and Early Diagnosis: Mechanisms and Techniques, ed. by. T.J. Dougherty, Proc. SPIE-Int. Soc. Opt. Eng. 1426, 44 (1991)Google Scholar
  371. S. Andersson-Engels, J. Johansson, S. Svanberg: Medical diagnostic system based on simultaneous multi-spectral fluorescence imaging. Appl. Opt. 33, 8022 (1994)ADSGoogle Scholar
  372. G.A. Wagnières, W.M. Star, B.C. Wilson: In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol. 68, 603 (1998)Google Scholar
  373. S. Andersson-Engels, G. Canti, R. Cubeddu, C. Eker, C. af Klinteberg, A. Pifferi, K. Svanberg, S. Svanberg, P. Taroni, G. Valentini, I. Wang: Spectroscopic characterization of basal cell carcinomas of the skin with multi-colour and lifetime fluorescence imaging. To be publishedGoogle Scholar
  374. [10.181]
    T.J. Dougherty, R.E. Thoma, D.G. Boyle, K.R. Weishaupt: Interstitial photoradiation therapy for primary solid tumors in pet cats and dogs. Cancer Research 41, 401 (1981)Google Scholar
  375. C.P. Lowell, D.V. Ash, I. Driver, S.B. Brown: Interstitial photodynamic therapy. Clinical experience with diffusing fibres in the treatment of cutaneous and subcutaneous tumours. Br. J. Cancer 67, 1398 (1993)Google Scholar
  376. S.F. Purkiss, R. Dean, J.T. Allardice, M. Grahn, N.S. Williams: An interstitial light delivery system for photodynamic therapy within the liver. Lasers Med. Sci. 8, 253 (1993)Google Scholar
  377. M. Stenberg, M. Soto Thompson, Th. Johansson, S. Pålsson, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg: Interstitial photodynamic therapy — diagnostic measurements and treatment of rat malignant experimental tumours. SPIE 4161 (2000)Google Scholar
  378. [10.182]
    K. Svanberg, T. Andersson, D. Killander, I. Wang, U. Stenram, S. Andersson-Engels, R. Berg, J. Johansson, S. Svanberg: Photodynamic therapy of non-melanoma malignant tumours of the skin utilizing topical δ-amino levulinic acid sensitization and laser irradiation. British J. of Dermatology 130, 743 (1994)Google Scholar
  379. [10.183]
    J.C. Kennedy, R.H. Potter, D.C. Pross: Photodynamic therapy with endogenous protoporphyrin IX: Basic principles and present clinical experience. J. Photochem Photobiol. 6, 143 (1990)Google Scholar
  380. J.C. Kennedy, R. Pottier: Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J. Photochem. Photobiol. B 14, 275 (1992)Google Scholar
  381. I. Wang, N. Bendsoe, C. af Klinteberg, A.M.K. Enejder, S. Anderson-Engels, S. Svanberg, K. Svanberg: Photodynamic therapy versus cryosurgery of basal cell carcinomas; Results of a Phase III clinical trial. Brit. J. Derm., in pressGoogle Scholar
  382. I. Wang, B. Bauer, S. Andersson-Engels, S. Svanberg, K. Svanberg: Photodynamic therapy utilizing topical δ-amino levulinic acid sensitization and laser irradiation. Acta Ophtal. Scand. 77, 182 (1999)Google Scholar
  383. Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug, K.-E. Giercksky, J.M. Nesland: 5-aminolevulinic acid-based photodynamic therapy: clinical research and future challenges. Cancer 79, 2282 (1997)Google Scholar
  384. [10.184]
    S. Andersson-Engels, Å. Elner, J. Johansson, S.-E. Karlsson, L.G. Salford, L.-G. Strömblad, K. Svanberg and S. Svanberg: Clinical recordings of laser-induced fluorescence spectra for evaluation of tumour demarcation feasibility in selected clinical specialities. Lasers Med. Sci. 6, 415 (1991)Google Scholar
  385. C. af Klinteberg, A.M.K. Nilsson, I. Wang, S. Andersson-Engels, S. Svanberg, K. Svanberg: Laser-induced fluorescence diagnostics of basal cell carcinomas of the skin following topical ALA application. Proc. SPIE-Int. Soc. Opt. Eng. 2926 (1996)Google Scholar
  386. [10.185]
    S. Montán: On the use of laser-induced fluorescence in medical and industrial applications, PhD dissertation, Lund Reports on Atomic Physics LRAP-75 (Lund Institute of Technology, 1987)Google Scholar
  387. [10.186]
    S. Andersson-Engels, A. Brun, E. Kjellén, L.G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg: Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative. Laser Med. Sci. 4, 241 (1989)Google Scholar
  388. [10.187]
    P.S. Andersson, S. Montán, S. Svanberg: Multi-spectral system for medical fluorescence imaging. IEEE J. Quantum Electron. QE-23, 1798 (1987)ADSGoogle Scholar
  389. [10.188]
    S. Svanberg: New developments in laser medicine. Phys. Scr. T72, 69 (1997)ADSGoogle Scholar
  390. [10.189]
    C. Kittrell, R.L. Willett, C. de los Santon-Pacheo, N.B. Ratliff, J.R. Kramer, E.G. Malk, M.S. Feld: Diagnosis of fibrous arterial atherosclerosis using fluorescence. Appl. Opt. 24, 2280 (1985)ADSGoogle Scholar
  391. R.M. Cothren, G.B. Hayes, J.R. Kramer, B. Sachs, C. Kittrell, M.S. Feld: Lasers Life Sci. 1, 1 (1986)Google Scholar
  392. [10.190]
    P.S. Andersson, A. Gustafson, U. Stenram, K. Svanberg, S. Svanberg: Monitoring of human atherosclerotic plaque using laser-induced fluorescence. Lasers Med. Sci. 2, 261 (1987)Google Scholar
  393. S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg: Laser-induced fluorescence used in localizing atherosclerotic lesions. Laser Med. Sci. 4, 171 (1989)Google Scholar
  394. S. Andersson-Engels, J. Johansson, S. Svanberg: The use of time-resolved fluorescence for diagnosis of atherosclerotic plaque and malignant tumours. Spectrochim. Acta A 46, 1203 (1990)ADSGoogle Scholar
  395. S. Andersson-Engels, A. Gustafson, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg: An investigation of possible fluorophores in human atherosclerotic plaque. Lasers Life Sci. 5, 1 (1992)Google Scholar
  396. [10.191]
    J.M. Isner, R.H. Clarke: The current status of lasers in the treatment of cardiovascular disease. IEEE J. Quantum Electron. QE-20, 1406 (1984)ADSGoogle Scholar
  397. J.M. Isner, P.G. Steg, R.H. Clarke: Current status of cardiovascular laser therapy. IEEE J. Quantum Electron. QE-23, 1756 (1987)ADSGoogle Scholar
  398. M.R. Prince, T.F. Deutsch, M.M. Mathews-Roth, R. Margolis, J.A. Parrish, A.R. Oseroff: Preferential light absorption in atheromas in vitro: Implications for laser angioplasty. J. Clin. Invest. 78, 295 (1986)Google Scholar
  399. [10.192]
    S. Udenfriend: Fluorescence Assay in Biology and Medicine, Vol.I (1962), Vol. II (1969) (Academic Press, New York)Google Scholar
  400. K.P. Mahler, J.F. Malone: Digital fluorescopy: A new development in medical imaging. Contemp. Phys. 27, 533 (1986)ADSGoogle Scholar
  401. G.M. Barenboim, A.N. Domanskii, K.K. Turoverev: Luminenscence of Biopolymers and Cells (Plenum, New York 1969)Google Scholar
  402. D.M. Kirschenbaum (ed.): Atlas of Protein Spectra in the Ultraviolet and Visible Regions, Vol. 2 (IFI/Plenum, New York 1974)Google Scholar
  403. [10.193]
    R.R. Alfano, B.T. Darayash, J. Cordero, P. Tomashefsky, F.W. Longo, M.A. Alfano: Laser-induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J. Quantum Electron. QE-20, 1507 (1984)ADSGoogle Scholar
  404. R.R. Alfano, G.C. Tang, A. Pradhan, W. Lam, D.S.J. Choy, E. Opher: Fluorescence spectra from cancerous and normal human breast and lung tissues. IEEE J. Quantum Electron. QE-23, 1806 (1987)ADSGoogle Scholar
  405. R. Richards-Kortum, R.P. Rava, R.E. Petras, M. Fitzmaurice, M.V. Sivak, M.S. Feld: Spectroscopic diagnosis of colonic dysplasia. Photochem. Photobiol. 53, 777 (1991)Google Scholar
  406. [10.194]
    Y.M. Ye, Y.L. Yang, Y.F. Li, F.M. Li: Characteristic autofluorescence for cancer diagnosis and the exploration of its origin. Proc. CLEO ′85 (Baltimore, MD)Google Scholar
  407. [10.195]
    S. Montán: Diploma paper, Lund Reports on Atomic Physics LRAP-19 (Lund University, Lund 1982)Google Scholar
  408. P.S. Andersson, E. Kjellén, S. Montán, K, Svanberg, S. Svanberg: Autofluorescence of various rodent tissues and human skin tumour samples. Lasers Med. Sci. 2, 41 (1987)Google Scholar
  409. J. Hung, S. Lam, J.C. LeRiche, B. Palcic: Autofluorescence of normal and malignant bronchial tissue, Lasers Surg. Med. 11, 99 (1991)Google Scholar
  410. B. Palcic, S. Lam, J. Hung, C. Mac Aulay: Detection and localization of early lung cancer by imaging techniques. Chest 99, 742 (1991)Google Scholar
  411. [10.196]
    R.R. Alfano, W. Lam, H.J. Zarrabi, M.A. Alfano, J. Cordero, D.B. Tata, C.E. Swenberg: Human teeth with and without caries studied by laser scattering, fluorescence and absorption spectroscopy. IEEE J. Quantum Electron. QE-20, 1512 (1984)ADSGoogle Scholar
  412. [10.197]
    F. Sundström, K. Fredriksson, S. Montán, U. Hafström-Björkman, J. Ström: Laser-induced fluorescence from sound and carious tooth substance: Spectroscopic studies. Swed. Dent. J. 9, 71 (1985)Google Scholar
  413. [10.198]
    J.J. Baraga, M.S. Feld, R.P. Rava: Rapid near-infrared Raman spectroscopy of human tissue with a spectrograph and CCD detector. Appl. Spectrosc. 46, 187 (1992)ADSGoogle Scholar
  414. J.J. Baraga, M.S. Feld, R.P. Rava: In situ histochemistry of human artery using near-infrared Fourier transform Raman spectroscopy (Proc. Natl. Acad. Sci. USA 1992)Google Scholar
  415. T.J. Römer, J.F. Brennan III, M. Fitzmaurice, M.F. Feinstein, G. Deinum, J.L. Myles, J.R. Kramer, R.S. Lees, M.S. Feld: Histopathology of human coronary atherosclerosis by quantifying its composition with Raman spectroscopy. Circulation 97, 878 (1998)Google Scholar
  416. [10.199]
    A.M.K. Nilsson, D. Heinrich, J. Olajos, S. Andersson-Engels: Near-infrared diffuse reflection and laser-induced fluorescence spectroscopy for myocardial tissue characterisation. Spectrochim. Acta A 53, 1901 (1997)ADSGoogle Scholar
  417. [10.200]
    J.J. Baraga, M.S. Feld, R.P. Rava: Infrared attenuated total reflectance of human arthery: a new modality for diagnosing atherosclerosis. Lasers Life Sci. 5, 13 (1992)Google Scholar
  418. I.J. Bigio, T.R. Loree, T. Shimada, K. Story-Held, R.D. Glickman, R. Conn: Optical diagnostics based on elastic scattering: recent clinical demonstrations with the Los Alamos Biopsy System. Proc. SPIE-Int. Soc. Opt. Eng. 2081 (1994)Google Scholar
  419. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L.T. Perelman, M.S. Feld: Polarized light scattering spectroscopy for quantitative measurements of epithelial cellular structure in situ. IEEE JSTQE Las. Med. Biol. 5 (1999)Google Scholar
  420. L.T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J.M. Crawford, M.S. Feld: Observation of periodic structure in reflectance from biological tissue: A new technique for measuring nuclear size distributions. Phys. Rev. Lett. 80, 627 (1998)ADSGoogle Scholar
  421. [10.201]
    S.R. Meech, C.D. Stubbs, D. Phillips: The application of fluorescence decay measurements in studies of biological systems. IEEE J. Quantum Electron. QE-20, 1343 (1984)ADSGoogle Scholar
  422. [10.202]
    M. Yamashita, M. Nomura, S. Kobayashi, T. Sato, K. Aizawa: Picosecond time-resolved fluorescence spectroscopy of hematoporphyrin derivative. IEEE J. Quantum Electron. QE-20, 1363 (1984)ADSGoogle Scholar
  423. V.S. Letokhov (ed.): Laser Picosecond Spectroscopy and Photochemistry of Biomolecules (Hilger, Bristol 1987)Google Scholar
  424. [10.203]
    L. Stryer: The molecules of visual excitation. Sci. Am. 257(1), 32 (1987)Google Scholar
  425. [10.204]
    D.B. Tata, M. Foresti, J. Cardero, P. Thomachefsky, M.A. Alfano, R.R. Alfano: Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues. Biophys. J. 50, 463 (1986)ADSGoogle Scholar
  426. [10.205]
    S. Andersson-Engels, J. Johansson, S. Svanberg: The use of time-resolved fluorescence for diagnosis of atherosclerotic plaque and malignant tumours. Spectrochim. Acta A 46, 1203 (1990)ADSGoogle Scholar
  427. [10.206]
    S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg: Fluorescence diagnostics and photochemical treatment of diseased tissue using lasers. Pt. I, Anal. Chem. 61, 1367A (1989); Pt.II, ibid. 62, 19A (1990Google Scholar
  428. S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg: Malignant tumor and atherosclerotic plaque diagnostics using laserinduced fluorescence. IEEE J. Quantum Electron. QE-26, 2207 (1990)ADSGoogle Scholar
  429. [10.207]
    S. Andersson-Engels, C. af Klinteberg, K. Svanberg, S. Svanberg: In vivo fluorescence imaging for tissue diagnosis. Phys. Med. Biol. 42, 815 (1997)Google Scholar
  430. K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montán, S. Andersson-Engels, S. Svanberg: Clinical multi-colour fluorescence imaging of malignant tumours — Initial experience. Acta Radiol. 38, 2 (1998)Google Scholar
  431. [10.208]
    R. Cubeddu, P. Taroni, G. Valentini, G. Canti: Use of time-gated fluorescence imaging for diagnosis in biomedicine. J. Photochem. Photobiol. B 12, 109 (1992)Google Scholar
  432. R. Cubeddu, A. Pifferi, P. Taroni, G. Valentini, G. Canti: Tumor detection in mice by measurment of fluorescence decay time matrices. Opt. Lett. 20, 2553 (1995)ADSGoogle Scholar
  433. S. Andersson-Engels, G. Canti, R. Cubeddu, Ch. Eker, C. af Klinteberg, A. Pifferi, K. Svanberg, S. Svanberg, P. Taroni, G. Valentini, I. Wang: Preliminary evaluation of two fluorescence imaging methods for the detection and the delineation of basal cell carcinomas of the skin. Lasers Surg. Med. 26, 76 (2000)Google Scholar
  434. [10.209]
    C. af Klinteberg, I. Wang, I. Karu, Th. Johansson, N. Bendsoe, K. Svanberg, S. Andersson-Engels, S. Svanberg, G. Canti, R. Cubeddu, A. Pifferi, P. Taroni, G. Valentini: Diode laser-mediated ALA-PDT guided by laserinduced fluorescence imaging. Unpublished.Google Scholar
  435. [10.210]
    J.R. Lakowicz: Principles of Fluorescence Microscopy (Plenum, New York 1983)Google Scholar
  436. B. Herman, J.J. Lemasters (eds.): Optical Microscopy — Emerging Methods and Applications (Academic Press, San Diego 1993)Google Scholar
  437. R.H. Webb: Confocal optical microscopy. Rep. Prog. Phys. 59, 427 (1996)ADSGoogle Scholar
  438. [10.211]
    Z. Malik, D. Cabib, R.A. Buckwald, Y. Garini, D. Soenkeson: A novel spectral imaging system combining spectroscopy with imaging — Applications for biology. Proc. SPIE-Int. Soc. Opt. Int. 2329, 180 (1994)ADSGoogle Scholar
  439. Z. Malik, G. Kostenich, C. Rothmann, I. Barshack, A. Orenstein: Imaging of human skin lesions using multipixel Fourier transform spectroscopy. Lasers Med. Sci. 13, 12 (1998)Google Scholar
  440. [10.212]
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu: Observation of a singlebeam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986)ADSGoogle Scholar
  441. K. Svoboda, S. Block: Biological applications of optical forces. Ann. Rev. Biophys. Biomol. Struct. 23, 247 (1994)Google Scholar
  442. K. Visscher, S.P. Gross, S.M. Block: Construction of multiple-beam optical traps with nanometer resolution position sensing. IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996)Google Scholar
  443. A. Ashkin: Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA 94, 4853 (1997)ADSGoogle Scholar
  444. S. Chu et al.: Science 280, 1253 (1998), Science 282, 95 (1998), Nature 394, 52 (199ADSGoogle Scholar
  445. M.W. Berns: Laser scissors and tweezers. Sci. Am. 278(4), 52 (1998)Google Scholar
  446. M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop: Alignment and spinning of laser-trapped microscopic particles. Nature 394, 348 (1998)ADSGoogle Scholar
  447. [10.213]
    A. Ishimaru: Wave Propagation and Scattering in Random Media (Academic Press, New York 1978)Google Scholar
  448. B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky: Comparison of time-resolved and-unresolved measurements of deoxyhemoglobin in the brain. Proc. Natl. Acad. Sci. USA 85, 4971 (1988)ADSGoogle Scholar
  449. B. Chance (ed.): Photon Migration in Tissue (Plenum, New York 1989)Google Scholar
  450. M.S. Patterson, B.C. Wilson, D.R. Wyman: The propagation of optical radiation in tissue. Models for radiation transport and their application. Lasers Med. Sci. 6, 155 (1991)Google Scholar
  451. S.L. Jacques: Time-resolved propagation of ultrashort pulses within turbid tissues. Appl. Opt. 28, 2223 (1989)ADSGoogle Scholar
  452. B. Chance, G. Müller (eds.): Optical Tomography, (SPIE, Bellingham 1993)Google Scholar
  453. G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee (eds.): Medical Optical Tomography, Functional Imaging and Monitoring, SPIE Institute Series, Vol. 11 (SPIE, Bellingham 1993)Google Scholar
  454. B.J. Tromberg, L.O. Svaasand, T.-T. Tsay, R.C. Haskell: Properties of optical density waves in multiple-scattering media. Appl. Opt. 32, 607 (1993)ADSGoogle Scholar
  455. S. Andersson-Engels, R. Berg, S. Svanberg: Effects of optical constants on time-gated transillumination of tissue and tissue-like media. J. Photochem. Photobiol. 16, 155 (1992)Google Scholar
  456. R. Berg, S. Andersson-Engels, C. af Klinteberg, S. Svanberg: In: OS A Proc. in Optical Imaging and Photon Migration, Vol. 21 (OSA, Washington DC, 1993) p. 126Google Scholar
  457. A.H. Gandjbakhche, G.H. Weiss: ‘Random walk and diffusion-like models of photon migration in turbid media.’ In: Progress in Optics XXXIV, ed. by E. Wolf (Elsevier, Amsterdam 1995) p. 333Google Scholar
  458. C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, S. Svanberg: Reconstruction of diffuse photon-density wave interference in turbid media from time-resolved transmittance measurements. Appl. Phys. Lett. 69, 1674 (1996)ADSGoogle Scholar
  459. J.C. Hebden, S.R. Arridge, D.T. Delpy: Optical imaging in medicine: I. Experimental techniques. Phys. Med. Biol. 42, 825 (1997)Google Scholar
  460. [10.214]
    R. Berg, S. Andersson-Engels, S. Svanberg: ‘Time-resolved transillumination imaging.’ In: G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee (eds.): Medical Optical Tomography, Functional Imaging and Monitoring, SPIE Institute Series, Vol.11 (SPIE, Bellingham 1993) p. 397Google Scholar
  461. [10.215]
    J.P. Payne, J.W. Severinghaus (eds.): Pulse Oximetry (Springer, Heidelberg 1986)Google Scholar
  462. M. Cope, D.T. Delpy: System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near-infrared transillumination. Med. Biol. Eng. Comp. 26, 289 (1988)Google Scholar
  463. [10.216]
    J.W. Hall, A. Pollard: Near-infrared spectroscopic determination of serum total proteins, albumin, globulins and urea. Clin. Biochem. 26, 483 (1993)Google Scholar
  464. Y. Mendelson, A.C. Clermont, R.A. Peura, B.-C. Lin: Blood glucose measurement by multiple attenuated total reflection and infrared absorption spectroscopy. IEEE Trans. Biomed. Eng. 37, 458 (1990)Google Scholar
  465. S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg: Multispectral tissue characterization using time-resolved detection of diffusely scattered white light. Opt. Lett. 18, 1697 (1993)ADSGoogle Scholar
  466. [10.217]
    K.M. Yoo, B.B. Das, R.R. Alfano: Imaging of a translucent object hidden in highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse. Opt. Lett. 17, 958 (1992)ADSGoogle Scholar
  467. J.C. Hebden, R.A. Kruger, K.S. Wong: Time-resolved imaging through a highly scattering medium. Appl. Opt. 30, 788 (1991)ADSGoogle Scholar
  468. B. Chance, K. Kang, L. He, J. Weng, E. Sevick: Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions. Proc. Natl. Acad. Sci. USA 90, 3423 (1995)ADSGoogle Scholar
  469. S.G. Demos, R.R. Alfano: Temporal gating in highly scattering media by the degree of optical polarization. Opt. Lett. 21, 161 (1996)Google Scholar
  470. K. Michielsen, H. De Raedt, J. Przeslawski, N. Garcia: Computer simulation of time-resolved optical imaging of objects hidden in turbid media. Phys. Rep. 304, 89 (1998)Google Scholar
  471. [10.218]
    S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman: Time-resolved transillumination for medical diagnostics. Opt. Lett. 15, 1179 (1990)ADSGoogle Scholar
  472. [10.219]
    R. Berg, O. Jarlman, S. Svanberg: Medical transillumination imaging using short pulse diode lasers. Appl. Opt. 32, 574 (1993)ADSGoogle Scholar
  473. [10.220]
    P.Ä. Öberg: Laser-Doppler flowmetry. Critical Reviews in Biomedical Engineering 18, 125 (1990)Google Scholar
  474. A.P. Shepherd, P.Ä. Öberg (eds.): Laser Doppler Blood Flowmetry (Kluwer Academic Publishers, Boston 1990)Google Scholar
  475. K. Wårdell, A. Jacobsson, G.E. Nilsson: Laser Doppler perfusion imaging by dynamic light scattering. IEEE Trans. Biomed. Eng. 40, 309 (1993)Google Scholar
  476. M.L. Arildsson, K. Wårdell, G.E. Nilsson: Higher order moment processing of laser Doppler perfusion signals. J. Biomed. Opt. 2, 358 (1997)ADSGoogle Scholar
  477. [10.221]
    R.R. Alfano, P.P. Ho, K.M. Yoo: Photons for prompt tumour detection. Phys. World 5, 37 (1992)Google Scholar
  478. [10.222]
    L. Wang, Y. Liu, P.P. Ho, R.R. Alfano: Photons for prompt tumour detection. Proc. SPIE-Int. Soc. Opt. Eng. 1431, 97 (1991)ADSGoogle Scholar
  479. [10.223]
    M.D. Duncan, R. Mahon, L.L. Tankersley, R. Reintjes: Time-gated imaging through scattering media using stimulated Raman amplification. Opt. Lett. 16, 1868 (1991)ADSGoogle Scholar
  480. [10.224]
    K.M. Yoo, Q. Xing, R.R. Alfano: Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation crosscorrelation time gating. Opt. Lett. 16, 1019 (1991)ADSGoogle Scholar
  481. [10.225]
    J.R. Lakowicz, G. Laczo, I. Gryczynski, H. Szmacinski, W. Wiczk, M.L. Johnson: Frequency-domain fluorescence spectroscopy: Principles, biochemical applications and future developments. Ber. Bunsenges. Phys. Chem. 93, 316 (1989)Google Scholar
  482. J. Fishkin, E. Gratton, M.J. van de Ven, W. W Mantulin: Diffusion of intensity-modulated near-infrared light in turbid media. Proc. SPIE-Int. Soc. Opt. Eng. 1431, 122 (1991)ADSGoogle Scholar
  483. M. Kaschke, H. Jess, G. Gaida, J.-M. Kaltenbach, W. Wrobel: ‘Transillumination imaging of tissue by phase-modulation techniques.’ In: Advances in Optical Imaging and Photon Migration, ed. by R.R. Alfano. Proc. OSA 21, 88 (1994)Google Scholar
  484. [10.226]
    M. Toida, T. Ichimura, H. Inaba: The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications. IEICE Trans. E74, 1692 (1991)Google Scholar
  485. [10.227]
    N. Abramson: Light-in-flight recording: High-speed holographic motion pictures of ultrafast phenomena. Appl. Opt. 22, 215 (1983)ADSGoogle Scholar
  486. [10.228]
    K.G. Spears, J. Serafin, N.H. Abramson, X. Zhu, H. Bjelkhagen: Chronocoherent imaging for medicine. IEEE Trans. Biomed. Eng. 36, 1210 (1989)Google Scholar
  487. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis: Twodimensional imaging through diffusing media using 150 fs gated electronic holography techniques. Opt. Lett. 16, 487 (1991)ADSGoogle Scholar
  488. [10.229]
    J.H. Hoogenraad, M.B. van der Mark, S.B. Colak, G.W. t’H ooft, E.S. van der Linden: ‘First results from the Phillips optical mammoscope.’ In: Photon Propagation in Tissue, ed. by D.A. Benaron, B. Chance, M. Ferrari. Proc. SPIE-Int. Soc. Opt. Eng. 3194, 184 (1998)Google Scholar
  489. B.W. Pogue, M. Testorf, U.L. Osterberg, K.D. Paulsen: Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection. Opt. Express 1, 391 (1997).ADSGoogle Scholar
  490. [10.230]
    J.P. van Houten, D.A. Benaron, S. Spilman, D.K. Stevenson: Imaging brain injury using time-resolved near infrared light scanning. Pediat. Res. 39, 470 (1996)Google Scholar
  491. [10.231]
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinton, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto: Optical coherence tomography. Science 254, 1178 (1991)ADSGoogle Scholar
  492. E.A. Swanson, D. Huang, M.R. Hee, J.G. Fujimoto, C.P. Lin, C.A. Puliafito: High-speed optical coherence domain reflectometry. Opt. Lett. 17, 151 (1992)ADSGoogle Scholar
  493. M.R. Hee, J.A. Izatt, J.M. Jacobson, J.G. Fujimoto: Femtosecond transillumination optical coherence tomography. Opt. Lett. 18, 950 (1993)ADSGoogle Scholar
  494. M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto: Optical coherence tomography of the human retina. Arch. Opthalmol. 113, 325 (1995)Google Scholar
  495. G.J. Tearny, M.E. Brezinski, B.M. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, J.G. Fujimoto: In vivo endoscopical optical biopsy with optical coherence tomography. Science 276, 2037 (1997)Google Scholar
  496. J.A. Izatt, M.D. Kulkarni, K. Kobayashi, M.V. Sivak, J.K. Barton, A.J. Welsch: Optical coherence tomography for biodiagnosis. Opt. Photonics News 8, 41 (1997)ADSGoogle Scholar
  497. A.M. Kowalievicz, T. Ko, I. Hartl, J.G. Fujimoto, M. Pollnau, R.P. Salathé: Ultrahigh resolution optical coherence tomography using a superluminescent light source. Opt. Express 10, 349 (2002)ADSGoogle Scholar
  498. W. Drexler et al.: Enhanced visualization of macular pathology with the use of ultra-high resolution optical coherence tomography. Arch. Ophtalmol. 121, 695 (2003)Google Scholar
  499. [10.232]
    E.A. Swanson, J.A. Izatt, H.M. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto: In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864 (1993)ADSGoogle Scholar
  500. [10.233]
    J. Johansson, R. Berg, A. Pifferi, S. Svanberg, L.O. Björn: Time-resolved studies of light propagation in Crassula and Phaseolus leaves. Photochem. Photobiol. 69, 242 (1999)Google Scholar
  501. [10.234]
    J. Carlsson, P. Hellentin, L. Malmqvist, A. Persson, W. Persson, C.-G. Wahlström: Time-resolved studies of light propagation in paper. Appl. Opt. 34, 1528 (1995)ADSGoogle Scholar
  502. [10.235]
    J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg: Time-resolved NIR/VIS spectroscopy for analysis of solids: Pharmaceutical tablets. Appl. Spectr. 56, 725 (2002)ADSGoogle Scholar
  503. [10.236]
    M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, S. Svanberg: Analysis of gas dispersed in scattering media. Opt. Lett. 26, 16 (2001)ADSGoogle Scholar
  504. [10.237]
    G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels, S. Svanberg: Concentration measurement of gas imbedded in scattering media by employing absorption and time-resolved laser spectroscopy. Appl. Opt. 41, 3538 (2003)ADSGoogle Scholar
  505. [10.238]
    J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, S. Svanberg: Laser spectroscopy on free molecular oxygen dispersed in wood materials. Appl. Phys. B (2003), in pressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations