Skip to main content

Active Site of Ribonuclease A

  • Chapter
Artificial Nucleases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 13))

Abstract

Ribonuclease A (RNase A; Ee 3.1.27.5) was perhaps the most studied enzyme of the 20th century and is the best characterized ribonuclease. The #x201C;A.#x201D; in its name refers not to its substrate specificity, but to the predominant form of the enzyme produced by the bovine pancreas. RNase A is unmodified, whereas RNase B, RNase e, and RNase D are mixtures of glycoforms. Because of its availability in large quantity and high purity, RNase A has been the object of landmark work in protein chemistry and enzymology (see Cuchillo et al. 1997; Raines 1998 and references therein). In addition, cytotoxic RNase A variants and homologues have demonstrated utility as chemotherapeutic agents (Leland and Raines 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  • Ballinger P, Long FA (1960) Acid ionization constants of alcohols. II. Acidities of some substituted methanols and related compounds. J Am Chem Soc 82:795–798

    Article  CAS  Google Scholar 

  • Barnard EA (1969) Ribonuci eases. Annu Rev Biochem 38:677–732

    Article  PubMed  CAS  Google Scholar 

  • Barnard EA, Stein WD (1959a) The histidine in the active centre of ribonuclease. I.A specific reaction with brom oacet ic acid. J Mol Biol 1:339–349

    Article  CAS  Google Scholar 

  • Barnard EA, Stein WD (1959b) The histidine residue in the active centre of ribonuclease. II. The position of this residue in the primary protein chain. J Mol Biol 1:350–358

    Article  Google Scholar 

  • Bruix M, Rico M, González C, Neira JL, Santoro J, Nieto JL, Rüterjans H (1991) Two dimensional 1H-NMR studies of the solution structure of RNase A-pyrimidinenucleotide complexes. In: de Llorens R, Cuchillo CM, Nogues MV, Pares X (eds) Structure, mechanism and fFunction of ribonucleases. Universitat Autónoma de Barcelona, Bellaterra, Spain, pp 15–20

    Google Scholar 

  • Carter P, Wells JA (1988) Dissecting the catalytic triad of a serine protease. Nature 332:564–568

    Article  PubMed  CAS  Google Scholar 

  • Cederholm MT, Stuckey JA, Doscher MS, Lee L (1991) Histidine pKa shifts accompanying the inactivating Asp121 → Asn substitution in a semisynthetic bovine pancreatic ribonuclease. Proc Natl Acad Sci USA 88:8116–8120

    Article  PubMed  CAS  Google Scholar 

  • Chatani E, Tanimizu N, Ueno H, Hayashi R (2001) Structural and functional changes in bovine pancreatic ribonuclease A by the replacement of Phe120 with other hydrophobic residues. J Biochem (Tokyo) 129:917–922

    Google Scholar 

  • Chatani E, Hayashi R, Moriyama H, Ueki T (2002) Conformational strictness required for maximum activity and stability of bovine pancreatic ribonuclease A as revealed by crystallographic study of three Phe120 mutants at 1.4 Aresolution. Protein Sci 11:72–81

    Article  PubMed  CAS  Google Scholar 

  • Corey DR, Craik CS (1992) An investigation into the minimum requirements for peptide hydrolysis by mutation of the catalytic triad of trypsin. J Am Chem Soc 114:1784–1790

    Article  CAS  Google Scholar 

  • Craik CS, Roczniak S, Largman C, Rutter WJ (1987) The catalytic role of the active site aspartic acid in serine proteases. Science 237:909–913

    Article  PubMed  CAS  Google Scholar 

  • Crestfield AM, Stein WH, Moore S (1962) On the aggregation of bovine pancreatic ribonuclease. Arch Biochem Biophys Suppl 1:217–222

    PubMed  CAS  Google Scholar 

  • Cuchillo CM, Pares X, Guasch A, Barman T, Travers F, Nogues MV (1993) The role of2′,3′cyclic phosphodiesters in the bovine pancreatic ribonuclease A catalysed cleavage of RNA: Intermediates or products? FEBS Lett 333:207–210

    Article  PubMed  CAS  Google Scholar 

  • Cuchillo CM, Vilanova M, Nogues MV (1997) Pancreatic ribonucleases. In: D’;Alessio G, Riordan JF (eds) Ribonucleases: structures and functions. Academic Press, New York, pp 271–304

    Google Scholar 

  • Dantzman CL (1998) PhD Thesis, University of Wisconsin-Madison

    Google Scholar 

  • Dantzman CL, Kiessling LL (1996) Reactivity of a 2′-thio nucleotide analog. J Am Chem Soc 118:11715–11719

    Article  CAS  Google Scholar 

  • Davis AM, Hall AD, Williams A (1988a) Charge description of base-catalyzed alcoholysis of aryl phosphodiesters: A ribonuclease model. J Am Chem Soc 110:5105–5108

    Article  CAS  Google Scholar 

  • Davis AM, Regan AC, Williams A (1988b) Experimental charge measurement at leaving oxygen in the bovine ribonuclease A catalyzed cyclization of uridine 3′-phosphate aryl esters. Biochemistry 27:9042–9047

    Article  PubMed  CAS  Google Scholar 

  • del Rosario EJ, Hammes GG (1969) Kinetic and equilibrium studies of the ribonuclease-catalyzed hydrolysis of uridine 2′,3′-cyclic phosphate. Biochemistry 8:1884–1889

    Article  PubMed  Google Scholar 

  • delCardayré SB, Ribo M, Yokel EM, Quirk DJ, Rutter WJ, Raines RT (1995) Engineering ribonuclease A: production, purification, and characterization of wild-type enzyme and mutants at Gln11. Protein Eng 8:261–273

    Article  PubMed  Google Scholar 

  • deMel VSJ, Martin PD, Doscher MS, Edwards BFP (1992) Structural changes that accompany the reduced catalytic efficiency of two semisynthetic ribonuclease analogs. J Biol Chem 267:247–256

    PubMed  CAS  Google Scholar 

  • Evans TC Jr, Benner J, Xu M-Q (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci 7:2256–2264

    Article  PubMed  CAS  Google Scholar 

  • Fickling MM, Fischer A, Mann BR, Packer J, Vaughan J (1959) Hammett substituent constants for electron-withdrawing substituents: Dissociation of phenols, anilinium ions and dimethylanilinium ions. J Am Chem Soc 81:4226–4230

    Article  CAS  Google Scholar 

  • Findlay D, Herries DG, Mathias AP, Rabin BR, Ross CA (1961) The active site and mechanism of action of bovine pancreatic ribonuclease. Nature 190:781–784

    Article  PubMed  CAS  Google Scholar 

  • Fisher BM, Ha J-H, Raines RT (1998) Coulombic forces in protein-RNA interactions: Binding and cleavage by ribonuclease A and variants at Lys7,ArglO and Lys66. Biochemistry 37:12121–12132

    Article  PubMed  CAS  Google Scholar 

  • Gilliland GL (1997) Crystallographic studies of ribonuclease complexes. In: D’Alessio G, Riordan JF (eds) Ribonucleases: structures and functions. Academic Press, New York, pp 305–341

    Google Scholar 

  • Gundlach HG, Stein WH, Moore S (1959) The nature of the amino acid residues involved in the inactivation of ribonuclease by iodoacetate. J Biol Chem 234:1754–1760

    PubMed  CAS  Google Scholar 

  • Herries DG, Mathias AP, Rabin BR (1962) The active site and mechanism of action of bovine pancreatic ribonuclease. 3. The pH-dependence of the kinetic parameters for the hydrolysis of cytidine 2′,3′-phosphate Biochem J 85:127-134

    Google Scholar 

  • Jackson DY, Burnier J, Quan C, Stanley M, Tom J, Wells JA (1994) A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science 266:243–247

    Article  PubMed  CAS  Google Scholar 

  • Jencks WP (1985) A primer for the Bema Hapothle. An empirical approach to the characterization of changing transition-state structures. Chem Rev 85:511–527

    Article  CAS  Google Scholar 

  • Kelemen BR, Klink TA, Behlke MA, Eubanks SR, Leland PA, Raines RT (1999) Hypersensitive substrate for ribonucleases. Nucleic Acids Res 27:3696–3701

    Article  PubMed  CAS  Google Scholar 

  • Ladner JE, Wladkowski BD, Svensson LA, Sjölin L, Gilliland GL (1997) X-Ray structure of a ribonuclease A-uridine vanadate complex at l.3-Ã… resolution. Acta Crystallogr Sect D 53:290–301

    Article  CAS  Google Scholar 

  • Leland PA, Raines RT (2001) Cancer chemotherapy — ribonucleases to the rescue. Chem Biol 8:405–413

    Article  PubMed  CAS  Google Scholar 

  • Lin MC, Gutte B, Moore S, Merrifield RB (1970) Regeneration of activity by mixture of ribonuclease enzymatically degraded from the COOH terminus and a synthetic COOH-terminal tetradecapeptide. J Biol Chem 245:5169–5170

    PubMed  CAS  Google Scholar 

  • Lin MC, Gutte B, Caldi DG, Moore S, Merrifield RB (1972) Reactivation of des(119-124) ribonuclease A by mixture with synthetic COOH-terminal peptides; the role of phenylalanine-120. J Biol Chem 247:4768–4774

    PubMed  CAS  Google Scholar 

  • Lindquist RN, Lynn JL Jr, Lienhard GE (1973) Possible transition-state analogs for ribonuclease. The complexes of uridine with oxovanadium(IV) ion and vanadium(V) ion. J Am Chem Soc 95:8762–8768

    Article  PubMed  CAS  Google Scholar 

  • Marchiori F, Borin G, Moroder L, Rocchi R, Scoffone E (1974) Relation between structure and function in some partially synthetic ribonucleases S′. II. Kinetic determinations on [Orn1O, Glu11]-, [Orn1O, Leu11]-and [Orn1O, Lys11]-RNase S′. Int J Pept Prot Res 6:337–345

    Article  CAS  Google Scholar 

  • Markley JL (1975) Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. I. Reinvestigation of the histidine peak assignment. Biochemistry 14:3546–3553

    Article  PubMed  CAS  Google Scholar 

  • Martin PD, Doscher MS, Edwards BFP (1987) The refined crystal structure of a fully active semisynthetic ribonuclease at 1.8-A resolution. J Biol Chem 262:15930–15938 Merrifield RB (1984) Solid phase synthesis. Science 232:341-347

    PubMed  CAS  Google Scholar 

  • Messmore JM (1999) PhD Thesis, University of Wisconsin, Madison

    Google Scholar 

  • Messmore JM, Raines RT (2000a) Decavanadate inhibits catalysis by ribonuclease A. Bioconjug Chem 11:25–30

    Article  Google Scholar 

  • Messmore JM, Raines RT (2000b) Pentavalent organo-vanadates as transition state analogues for phosphoryl transfer reactions. J Am Chem Soc 122:9911–9916

    Article  PubMed  CAS  Google Scholar 

  • Messmore JM, Fuchs DN, Raines RT (1995) Ribonuclease A: Revealing structure-function relationships with semisynthesis. J Am Chem Soc 117:8057–8060

    Article  PubMed  CAS  Google Scholar 

  • Messmore JM, Holmgren SK, Grilley JE, Raines RT (2000) Sulfur shuffle: Modulating enzymatic activity by thiol-disulfide interchange. Bioconjug Chem 11:408–413

    Article  PubMed  CAS  Google Scholar 

  • Moore S, Stein WH (1973) Chemical structures of pancreatic ribonuclease and deoxyribonuclease. Science 180:458–464

    Article  PubMed  CAS  Google Scholar 

  • Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci USA 95:6705–6710

    Article  PubMed  CAS  Google Scholar 

  • Murdock AL, Grist KL, Hirs CHW (1966) On the dinitrophenylation of bovine pancreatic ribonuclease A. Kinetic s of the reaction in water and 8 M urea. Arch Biochem Biophys 114:375–390

    Article  CAS  Google Scholar 

  • Neurath H (1989) In: Beynon RJ, Bond JS (eds) Proteolytic enzymes: a practical approach. IRL Press, New York, pp 1–13

    Google Scholar 

  • Panov KI, Kolbanovskaya EY, Okorokov AL, Panova TB, Terwisscha van Scheltinga AC, Karpeisky MYa, Beintema JJ (1996) Ribonuclease A mutant His119 Asn: The role of histidine in catalysis. FEBS Lett 398:57–60

    Article  PubMed  CAS  Google Scholar 

  • Park C, Raines RT (2001) Quantitative analysis of the effect of salt concentration on enzymatic catalysis. J Am Chem Soc 123:11472–11479

    Article  PubMed  CAS  Google Scholar 

  • Park C, Raines RT (2003) Catalysis by ribonuclease A is limited by the rate of substrate association. Biochemistry 42:3509–3518

    Article  PubMed  CAS  Google Scholar 

  • Park C, Schultz LW, Raines RT (2001) Contribution of the active site histidine residues of ribonuclease A to nucleic acid binding. Biochemistry 40:4949–4956

    Article  PubMed  CAS  Google Scholar 

  • Quirk DJ, Park C, Thompson JE, Raines RT (1998) His⋯Asp catalytic dyad of ribonuclease A: Conformational stability of the wild-type, D121 N, D121A, and H119A enzymes. Biochemistry 37:17985–17964

    Article  Google Scholar 

  • Quirk DJ, Raines RT (1999) His⋯Asp catalytic dyad of ribonuclease A: Histidine pKa values in the wild-type, D121 N, and D121A enzymes. Biophys J 76:1571–1579

    Article  PubMed  CAS  Google Scholar 

  • Raines RT (1998) Ribonuclease A. Chem Rev 98:1045–1065

    Article  PubMed  CAS  Google Scholar 

  • Reese CB, Simons C, Zhang PZ (1994) The synthesis of 2′-thiouridylyl-(3′→5′)-uridine. J Chem Soc, Chem Commun:1809–1810

    Google Scholar 

  • Richards FM, Wyckoff HW (1971) Bovine pancreatic ribonuclease. The Enzymes IV:647–806

    Article  Google Scholar 

  • Schowen RL (1988) Structural and energetic aspects of proteolytic catalysis by enzymes: Charge-relay catalysis in the function of serine proteases. In: Liebman JF, Greenberg A (eds) Mechanistic principles of enzyme activity. VCH, New York, pp 119–168

    Google Scholar 

  • Schultz LW, Quirk DJ, Raines RT (1998) His⋯Asp catalytic dyad of ribonuclease A:Structure and function of the wild-type, D121 N, and D121A enzymes. Biochemistry 37:8886–8898

    Article  PubMed  CAS  Google Scholar 

  • Sowa GA, Hengge AC, Cleland WW (1997) 18O isotope effects support a concerted mechanism for ribonuclease A. J Am Chem Soc 119:2319–2320

    Article  CAS  Google Scholar 

  • Sprang S, Standing T, Fletterick RJ, Stroud RM, Finer-Moore JF, Xuong NH, Hamlin R, Rutter WJ, Craik CS (1987) The three-dimensional structure of Asn102 mutant trypsin: Role of Asp102 in serine protease catalysis. Science 237:905–909

    Article  PubMed  CAS  Google Scholar 

  • Sprang SR, Fletterick RJ, Graf L, Rutter WJ, Craik CS (1988) Studies of specificity and catalysis in trypsin by structural analysis of site-directed mutants. Crit Rev Biotechnol 8: 225–236

    Article  PubMed  CAS  Google Scholar 

  • Stern MS, Doscher MS (1984) Aspartic acid-121 functions at the active site of bovine pancreatic ribonuclease. FEBS Lett 171:253–256

    Article  PubMed  CAS  Google Scholar 

  • Tanimizu N, Ueno H, Hayashi R (1998) Role of Phe120 in the activity and structure of bovine pancreatic ribonuclease A. J Biochem 124:410–416

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE, Raines RT (1994) Value of general acid-base catalysis to ribonuclease A. J Am Chem Soc 116:5467–5468

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE, Kutateladze TG, Schuster MC, Venegas FD, Messmore JM, Raines RT (1995) Limits to catalysis by ribonuclease A. Bioorg Chem 23:471–481

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE, Venegas FD, Raines RT (1994) Energetics of catalysi s by ribonucleases: Fate of the 2′,3′-cyclic intermediate. Biochemistry 33:7408–7414

    Article  PubMed  CAS  Google Scholar 

  • Trautwein K, Holliger P, Stackhouse J, Benner SA (1991) Site-directed mutagenesis of bovine pancreatic ribonuclease: Lysine-41 and aspartate-121. FEBS Lett 281:275–277

    Article  PubMed  CAS  Google Scholar 

  • Usher DA, Erenrich ES, Eckstein F (1972) Geometry of the first step in the action of ribonuclease-A. Proc Natl Acad. Sci U.S.A. 69:115–118

    Article  PubMed  CAS  Google Scholar 

  • Usher DA, Richardson DI Jr, Eckstein F (1970) Absolute stereochemistry of the second step of ribonuclease action. Nature 228:663–665

    Article  PubMed  CAS  Google Scholar 

  • Velikyan I, Acharya S, Trifonova A, Földesi A, Chattopadhyaya J (2001) The pKa’s of 2′hydroxyl group in nucleosides and nucleotides. J Am Chem Soc 123:2893–2894

    Article  PubMed  CAS  Google Scholar 

  • Witzel H (1963) The function of the pyrimidine base in the ribonuclease reaction. Progr Nucleic Acid Res 2:221–258

    Article  CAS  Google Scholar 

  • Wlodawer A, Miller M, Sjülin L (1983) Active site of RNase: Neutron diffraction study of a complex with uridine vanadate, a transition-state analog. Proc Natl Acad Sci USA 80:3628–3631

    Article  PubMed  CAS  Google Scholar 

  • Wolfenden R (1976) Transition state analog inhibitors and enzyme catalysis. Annu Rev Biophys Bioeng 5:271–306

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raines, R.T. (2004). Active Site of Ribonuclease A. In: Zenkova, M.A. (eds) Artificial Nucleases. Nucleic Acids and Molecular Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18510-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18510-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62139-0

  • Online ISBN: 978-3-642-18510-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics