Skip to main content

DNA and RNA Cleavage Mediated by Phenanthroline-Cuprous Oligonucleotides: From Properties to Applications

  • Chapter
Artificial Nucleases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 13))

Abstract

Several metallic ions when bound to a ligand bringing them in close proximity to nucleic acids are able to cleave phosphodiester bonds, in the presence of oxygen. Redox-active iron and copper ions induced DNA cleavage in the presence of bleomycin, a well-known antitumoral antibiotic interacting with DNA double helix. Small molecules such as ethylene-diamine tetraacetic acid (EDTA), porphyrin, and 1,10-phenanthroline (OP) chelate redox-active divalent metal cations to form EDTA-Fe(II), porphyrin-Fe (II), and OP-Cu(I) complexes, and also induce DNA cleavage with production of hydroxyl radicals or metal-oxo derivatives leading to hydroxylation via oxidative insertion of deoxyribose or ribose moieties that in turn leads to cleavage of phosphodiester bonds via a variety of elimination reaction schemes. Since their discoveries, the cleavage properties of these metal complexes have been used in footprinting experiments to analyze the structure of protein-nucleic acid complexes. These cleavage reagents have also been tethered to larger molecules such as oligonucleotides, proteins, and intercalating agents, which confer additional specificity. This review will focus on the 1,1O-phenanthroline- copper complex and its cleavage properties when conjugated to macromolecules, especially in the case of oligonucleotides. For other use of OP-Cu complexes, one can refer to previous reviews (Sigman et al. 1993b; Chen et al. 2001; Hermann and Heumann 2000; Milne et al. 2001; Muth and Hill200l). We present here a few examples of the utilization of these cleaving 1,10-phenanthroline- copper conjugates in biochemical studies as structural probes, as artificial ribo- and deoxyribonucleases and as modulators of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arimondo P, Boutorine A, Francois JC (2002). Oligonucleotide-conjugates targeted to single-stranded and double-stranded nucleic acids. Recent Res Devel Bioconj Chem 1:29–53

    CAS  Google Scholar 

  • Bales BC, Pitie M, Meunier B, Greenberg MM (2002). A Minor Groove Binding CopperPhenynthroline Conjugate Produces direct Strand Breaks via beta-Elimination of 2-Deoxyribonolactone. J Am Chem Soc 124:9062–9063

    Article  PubMed  CAS  Google Scholar 

  • Basak S, Nagaraja V (2001). A versatile in vivo footprinting technique using 1,10-phenanthroline-copper complex to study important cellular processes. Nucleic Acids Res 29:E105-5

    Google Scholar 

  • Basak S, Olsen L, Hattman S, Nagaraja V (2001) Intrinsic DNA distortion of the bacteriophage Mu momPl promoter is a negative regulator of its transcription. A novel mode of regulation of toxic gene expression. J Biol Chem 276:19836–19844

    Article  PubMed  CAS  Google Scholar 

  • Bennett RA, Swerdlow PS, Povirk LF (1993) Spontaneous cleavage of bleomycin-induced abasic sites in chromatin and their mutagenicity in mammalian shuttle vectors. Biochemistry 32:3188–3195

    Article  PubMed  CAS  Google Scholar 

  • Boldron C, Ross S. Pitie M, Meunier B (2002). Acridine conjugates of 3-Clip-Phen: Influence of the linker on the synthesis and the DNA cleavage activity of their copper complexes. Bioconjug Chem 13:1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Bowen WS, Hill WE, Lodmell JS (2001) Comparison of rRNA cleavage by complementary l,10-phenanthroline-Cu(II)-and EDTA-Fe(II)-derivatized oligonucleotides. Methods 25:344–350

    Article  PubMed  CAS  Google Scholar 

  • Bucklin DJ, van Waes MA, Bullard JM, Hill WE (1997) Cleavage of 16S rRNA within the ribosome by mRNA modified in the A-site codon with phenanthroline-Cu(II). Biochemistry 36:7951–7957

    Article  PubMed  CAS  Google Scholar 

  • Bullard JM, van Waes MA, Bucklin DJ, Hill WE (1995) Regions of 23S ribosomal RNA proximal to transfer RNA bound at the P and E sites. J Mol Biol 252:572–582

    Article  PubMed  CAS  Google Scholar 

  • Bullard JM, van Waes MA, Bucklin DJ, Rice MJ, Hill WE (1998) Regions of 16S ribosomal RNA proximal to transfer RNA bound at the P-site of Escherichia coli ribosomes. Biochemistry 37:1350–1356

    Article  PubMed  CAS  Google Scholar 

  • Burkitt MJ, Milne L, Nicotera P, Orrenius S (1996) l,10-Phenanthroline stimulates internucleosomal DNA fragmentation in isolated rat-liver nuclei by promoting the redox activity of endogenous copper ions. Biochem J 313:163–169

    PubMed  CAS  Google Scholar 

  • Chen CB, Sigman DS (1988) Sequence-specific scission of RNA by l,10-phenanthrolinecopper linked to deoxynucleotides. J Am Chem Soc 110:6570–6572

    Article  CAS  Google Scholar 

  • Chen CB, Gorin MB, Sigman DS (1993a) Sequence-specific scission of DNA by the chemical nuclease activity of l,lO-phenanthroline-copper(I) targeted by RNA. Proc Natl Acad Sci USA 90:4206–4210

    Article  PubMed  CAS  Google Scholar 

  • Chen CH, Mazumder A, Constant JF, Sigman DS (1993b) Nuclease activity of 1,10-phenanthroline-copper. New conjugates with low molecular weight targeting ligands. Bioconjugate Chem 4: 69–77

    Article  CAS  Google Scholar 

  • Chen CB, Milne L, Landgraf R, Perrin DM, Sigman DS (2001) Artificial nucleases. Chembiochemistry 2:735–740

    Article  CAS  Google Scholar 

  • Chen CH, Landgraf R, Walts AD, Chan L, Schlonk PM, Terwilliger TC, Sigman DS (1998) Scission of DNA at a preselected sequence using a single-strand-specific chemical nuclease. Chem Biol 5:283–292

    Article  PubMed  CAS  Google Scholar 

  • Faria M, Giovannangeli C (2001) Triplex-forming molecules: from concepts to applications. J Gene Med 3:299–310

    Article  PubMed  CAS  Google Scholar 

  • Feig AL, Thederahn T, Sigman DS (1988) Mutagenicity of the nuclease activity of 1,10-phenanthroline-copper ion. Biochem Biophys Res Commun 155:338–343

    Article  PubMed  CAS  Google Scholar 

  • Francois JC, Helene C (1995) Recognition and cleavage of single-stranded DNA containing hairpin structures by oligonucleotides forming both Watson-Crick and Hoogsteen hydrogen bonds. Biochemistry 34:65–72

    Article  PubMed  CAS  Google Scholar 

  • Francois JC, Saison-Behmoaras T, Helene C (1988) Sequence-specific recognition of the major groove of DNA by oligodeoxynucleotides via triple helix formation. Footprinting studies. Nucleic Acids Res 16:11431–11440

    Article  PubMed  CAS  Google Scholar 

  • Francois JC, Saison-Behmoaras T, Barbier C, Chassignol M, Thuong NT, Helene C (1989a) Sequence-specific recognition and cleavage of duplex DNA via triple-helix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate. Proc Natl Acad Sci USA 86:9702–9706

    Article  PubMed  CAS  Google Scholar 

  • Francois JC, Saison-Behmoaras T, Chassignol M, Thuong NT, Helene C (1989b) Sequence-targeted cleavage of single-and double-stranded DNA by oligothymidylates covalently linked to l,lO-phenanthroline. J Biol Chem 264:5891–5898

    PubMed  CAS  Google Scholar 

  • Francois JC, Thuong NT, Helene C (1994) Recognition and cleavage of hairpin structures in nucleic acids by oligodeoxynucleotides. Nucleic Acids Res 22:3943–3950

    Article  PubMed  CAS  Google Scholar 

  • Gallagher J, Chen CH, Pan CQ, Perrin DM, Cho YM, Sigman DS (1996a) Optimizing the targeted chemical nuclease activity of 1,10-phenanthroline-copper by ligand modification. Bioconjugate Chem 7:413–420

    Article  CAS  Google Scholar 

  • Gallagher J, Perrin DM, Chan L, Kwong E, Sigman D (1996b) Recognition of tetrahedral l,lO-phenanthroline-cuprous chelates by transcriptionally active complexes does not depend on the sequence of the promoter. Chem Biol 3:739–746

    Article  PubMed  CAS  Google Scholar 

  • Gallagher J, Zelenko O, Walts AD, Sigman DS (1998) Protease activity of l,lO-phenanthroline-copper(I). Targeted scission of the catalytic site of carbonic anhydrase. Biochemistry 37:2096–2104

    Article  PubMed  CAS  Google Scholar 

  • Giovannangeli C, Helene C (2000) Triplex-forming molecules for modulation of DNA information processing. Curr Opin Mol Ther 2:288–296

    PubMed  CAS  Google Scholar 

  • Godard G, Francois JC, Duroux I, Asseline U, Chassignol M, Nguyen T, Helene C, Saison-Behmoaras T (1994) Photochemically and chemically activatable antisense oligonucleotides: comparison of their reactivities towards DNA and RNA targets. Nucleic Acids Res 22:4789–4795

    Article  PubMed  CAS  Google Scholar 

  • Goyne TE, Sigman DS (1987) Nuclease activity of 1,10-phenanthroline-copper ion. Chemistry of deoxyribose oxidation. J Am Chem Soc 109:2846–2848

    Article  CAS  Google Scholar 

  • Hampel KJ, Burke JM (2001) Time-resolved hydroxyl-radical footprinting of RNA using Fe(II)-EDTA. Methods 23:233–239

    Article  PubMed  CAS  Google Scholar 

  • Haner R, Hall J (1997) The sequence-specific cleavage of RNA by artificial chemical ribonucleases. Antisense Nucleic Acid Drug Dev 7:423–430

    Article  PubMed  CAS  Google Scholar 

  • Hermann T, Heumann H (1995) Determination of nucleotide distances in RNA by means of copper phenanthroline-generated hydroxyl radical cleavage pattern. RNA 1:1009–1017

    PubMed  CAS  Google Scholar 

  • Hermann T, Heumann H (2000) Structure and distance determination in RNA with copper phenanthroline probing. Methods Enzymol 318:33–43

    Article  PubMed  CAS  Google Scholar 

  • Hill WE, Bucklin DJ, Bullard JM, Galbraith AL, Jammi NV, Rettberg CC, Sawyer BS, van Waes MA (1995) Identification of ribosome-ligand interactions using cleavage reagents. Biochem Cell Biol 73:1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Ke Y, Theil EC (2002) An mRNA looplbulge in the ferritin iron-responsive element forms in vivo and Was detected by radical probing with CU-1,10-phenantholine and iron regulatory protein footprinting. J Biol Chem 277:2373–2376

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R, Chen CH, Sigman DS (1995) Double stranded scission of DNA directed through sequence-specific R-Ioop formation. Nucleic Acids Res 23:3524–3530

    Article  PubMed  CAS  Google Scholar 

  • Mazumder A, Perrin DM, Watson KJ, Sigman DS (1993) A transcription inhibitor specific for unwound DNA in RNA polymerase-promoter open complexes. Proc Natl Acad Sci USA 90:8140–8144

    Article  PubMed  CAS  Google Scholar 

  • Meijler MM, Zelenko O, Sigman DS (1997) Chemical Mechanism of DNA scission by (1,1O-phenanthroline)copper. Carbonyl oxygen of 5-methylenefuranone is derived from water. J Am Chem Soc 119:1135–1136

    Article  CAS  Google Scholar 

  • Milne L, Xu Y, Perrin DM, Sigman DS (2000) An approach to gene-specific transcription inhibition using oligonucleotides complementary to the template strand of the open complex. Proc Natl Acad Sci USA 97:3136–4141

    Article  PubMed  CAS  Google Scholar 

  • Milne L, Perrin DM, Sigman DS (2001) Oligoribonucleotide-based gene-specific transcription inhibitors that target the open complex. Methods 23:160–168

    Article  PubMed  CAS  Google Scholar 

  • Muth GW, Hill WE (2001) Phenanthroline-Cu(II) cleavage as a probe of rRNA structure. Methods 23:218–232

    Article  PubMed  CAS  Google Scholar 

  • Muth GW, Thompson CM, Hill WE (1999) Cleavage of a 23S rRNA pseudoknot by phenanthroline-Cu(II). Nucleic Acids Res 27:1906–1911

    Article  PubMed  CAS  Google Scholar 

  • Muth GW, Hennelly SP, Hill WE (2000) Using a targeted chemical nuclease to elucidate conformational changes in the E. coli 30S ribosomal subunit. Biochemistry 39:4068–4074

    Article  PubMed  CAS  Google Scholar 

  • Myers KJ, Dean NM (2000) Sensible use of antisense: how to use oligonucleotides as research tools. Trends Pharmacol Sci 21:19–23

    Article  PubMed  CAS  Google Scholar 

  • Oyoshi T, Sugiyama H (2002) Mechanism of DNA strand scission induced by (1,10-phenanthroline)copper complex: Major direct DNA cleavage is not through 1′,2′dehydronucleotide intermediate nor β-elimination of forming ribonolactone. J Am Chem Soc 122:6313–6314

    Article  Google Scholar 

  • Pan CQ, Feng JA, Finkel SE, Landgraf R, Sigman D, Johnson RC (1994) Structure of the Escherichia coli Fis-DNA complex probed by protein conjugated with 1,10-phenanthroline copper(I) complex. Proc Natl Acad Sci USA 91:1721–1725

    Article  PubMed  CAS  Google Scholar 

  • Phillips JW, Morgan WF (1994) Illegitimate recombination induced by DNA double-strand breaks in a mammalian chromosome. Mol Cell Biol 14:5794–5803

    Article  PubMed  CAS  Google Scholar 

  • Pitie M, Burrows CT, Meunier B (2002a) Mechanisms of DNA cleavage by copper complexes of 3-clip-phen and of its conjugate with a distamycin analogue. Nucleic Acids Res 28:4856–4864

    Article  Google Scholar 

  • Pitie M, Meunier B (1998) Preparation of a spermine conjugate of the bis-phenanthroline ligand Clip-Phen and evaluation of the corresponding copper complex. Bioconjug Chem 9:604–611

    Article  PubMed  CAS  Google Scholar 

  • Pitie M, Van Horn JD, Brion D, Burrows CT, Meunier B (2000b) Targeting the DNA cleavage activity of copper phenanthroline and clip-phen to A.T tracts via linkage to a poly-N-methylpyrrole. Bioconjugate Chem 11:892–900

    Article  CAS  Google Scholar 

  • Praseuth D, Guieysse AL, Helene C (1999) Triple helix formation and the antigene strategy for sequence-specific control of gene expression. Biochim Biophys Acta 1489:181–206

    Article  PubMed  CAS  Google Scholar 

  • Putnam WC, Daniher AT, Trawick BN, Bashkin JK (2001) Efficient new ribozyme mimics: direct mapping of molecular design principles from small molecules to macromolecular, biomimetic catalysts. Nucleic Acids Res 29:2199–2204

    Article  PubMed  CAS  Google Scholar 

  • Reich KA, Marshall LE, Graham DR, Sigman DS (1981) Cleavage of DNA by the 1,10-phenanthroline-copper ion complex. Superoxide mediates the reaction dependant on NADH and hydrogen peroxide. J Am Chem Soc 103:3582–3584

    Article  CAS  Google Scholar 

  • Shimizu M, Morioka H, Inoue H, Ohtsuka E (1996) Triplex-mediated cleavage of DNA by 1,10-phenanthroline-linked 2′-O-methyl RNA. FEBS Lett 384:207–210

    Article  PubMed  CAS  Google Scholar 

  • Sigman DS, Graham DR, D′Aurora V, Stern AM (1979) Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline. cuprous complex. Inhibition of Escherichia coli DNA polymerase I. J Biol Chem 254:12269–12272

    PubMed  CAS  Google Scholar 

  • Sigman DS, Chen CH, Gorin MB (1993a) Sequence-specific scission of DNA by RNAs linked to a chemical nuclease. Nature 363:474–475

    Article  PubMed  CAS  Google Scholar 

  • Sigman DS, Mazumder A, Perrin DM (1993b) Chemical nucleases. Chem Rev 93:2295–2316

    Article  CAS  Google Scholar 

  • Sigman DS, Landgraf R, Perrin DM, Pearson L (1996) Nucleic acid chemistry of the cuprous complexes of 1,1O-phenanthroline and derivatives. Met Ions Biol Syst 33:485–513

    PubMed  CAS  Google Scholar 

  • Sun JS, Francois IC, Lavery R, Saison-Behmoaras T, Montenay-Garestier T, Thuong NT, Helene C (1988) Sequence-targeted cleavage of nucleic acids by oligo-alpha-thymidylate-phenanthroline conjugates: parallel and antiparallel double helices are formed with DNA and RNA, respectively. Biochemistry 27:6039–6045

    Article  PubMed  CAS  Google Scholar 

  • Sutton CL, Mazumder A, Chen CH, Sigman DS (1993) Transforming the Escherichia coli Trp repressor into a site-specific nuclease. Biochemistry 32:4225–4230

    Article  PubMed  CAS  Google Scholar 

  • Tsang SY, Tam SC, Bremner I, Burkitt MJ (1996) Copper-l,10-phenanthroline induces internucleosomal DNA fragmentation in HepG2 cells, resulting from direct oxidation by the hydroxyl radical. Biochem J 317:13–16

    PubMed  CAS  Google Scholar 

  • Veal JM., Rill RL (1989) Sequence specificity of DNA cleavage by bis(1,10-phenanthroline) copper(I): effects of single base pair transitions on the cleavage of preferred pyrimidine-purine-pyrimidine triplets. Biochemistry 28:3243–3250

    Article  PubMed  CAS  Google Scholar 

  • Veal JM, Rill RL (1991) Noncovalent DNA binding of bis(1,1O-phenanthroline)copper(I) and related compounds. Biochemistry 30:1132–1140

    Article  PubMed  CAS  Google Scholar 

  • Veal JM, Merchant K, Rill RL (1991) The influence of reducing agent and 1,1O-phenanthroline concentration on DNA cleavage by phenanthroline + copper. Nucleic Acids Res 19:3383–3388

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Lin PN, Sczekan SR, McKenzie RA, Theil EC (1991) Ferritin mRNA probed, near the iron regulatory region, with protein and chemical (1,10-phenanthroline-Cu) nucleases. A possible role for base-paired flanking regions. Biol Met 4:56–61

    Article  PubMed  CAS  Google Scholar 

  • Williams LD, Thivierge J, Goldberg IH (1988) Specific binding of o-phenanthroline at a DNA structural lesion. Nucleic Acids Res 16:11607–11615

    Article  PubMed  CAS  Google Scholar 

  • Wolfe JT, Ross D, Cohen GM (1994) A role for metals and free radicals in the induction of apoptosis in thymocytes. FEBS Lett 352:58–62

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Perrin DM, Sigman DS, Kaback HR (1995) Helix packing of lactose permease in Escherichia coli studied by site-directed chemical cleavage. Proc Natl Acad Sci USA 92:9186–9190

    Article  PubMed  CAS  Google Scholar 

  • Zain R, Marchand C, Sun J, Nguyen CH, Bisagni E, Garestier T, Helene C (1999) Design of a triple-helix-specific cleaving reagent. Chem Biol 6:771–777

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Francois, JC., Faria, M., Perrin, D., Giovannangeli, C. (2004). DNA and RNA Cleavage Mediated by Phenanthroline-Cuprous Oligonucleotides: From Properties to Applications. In: Zenkova, M.A. (eds) Artificial Nucleases. Nucleic Acids and Molecular Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18510-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18510-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62139-0

  • Online ISBN: 978-3-642-18510-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics