Skip to main content

A biological approach to treating disc degeneration: not for today, but maybe for tomorrow

  • Conference paper
Arthroplasty of the Spine

Abstract

The intervertebral disc unites the vertebrae in the spine, providing the flexibility required for bending and twisting and resisting the compression inflicted by gravity when in an upright posture. The discs have a complex structure, with the outer annulus fibrosus having lamellae of organized collagen fibrils and the inner nucleus pulposus having a more random collagen organization and an abundance of aggregating proteoglycans. This composite nature endows the disc with both the tension-resisting properties of a ligament and the compression-resisting properties of articular cartilage. Unfortunately, disc structure and function does not remain optimal throughout life, but undergoes progressive degeneration, commencing in the young adult, and is particularly evident in the nucleus pulposus. With time, disc degeneration may result in clinical symptoms, such as low back pain, and require medical intervention. Such treatment may involve removal of the offending disc by surgery rather than its repair, which would be the preferred course of action. In the near future, current bio-engineering techniques may offer the possibility of repairing the damaged disc, if an engineered tissue with the appropriate functional properties can be generated to augment the ailing disc. In this report, we summarized our recent results, in which disc cells were implanted into a scaffold of collagen and hyaluronan, or entrapped into a chitosan gel, and growth factors were used to modulate matrix synthesis in an attempt to produce a tissue with a similar molecular composition to native nucleus pulposus tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam M, Deyl Z (1984) Degenerated annulus fibrosus of the intervertebral disc contains collagen type II. Ann Rheum Dis 43:258–263

    Article  PubMed  CAS  Google Scholar 

  2. Aguiar DJ, Johnson SL, Oegema TR (1999) Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 246:129–137

    Article  PubMed  CAS  Google Scholar 

  3. Aigner T, Gresk-Otter KR, Fairbank JC, von der Mark K, Urban JP (1998) Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs. Calcif Tissue Int 63:262–268

    Article  Google Scholar 

  4. Alini M, Li W, Aebi M, Roughley P, Hoemann C (2002) The use of disc cells embedded within a chitosan gel to repair degenerated intervertebral discs: a preliminary study. Canadian Connective Tissue Conference, 31 May–1 June, 2002, Sherbrooke, Quebec

    Google Scholar 

  5. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc. Evidence for changes in the biosynthesis and de-naturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003

    Article  PubMed  CAS  Google Scholar 

  6. Ayad S, Weiss JB (1986) Biochemistry of the intervertebral disc. In: Jayson MIV (ed) The lumbar spine and back pain. Pitmann, London, pp 100–137

    Google Scholar 

  7. Ayad S, Abedin MZ, Grundy SM, Weiss JB (1981) Isolation and characterisation of an unusual collagen from hyaline cartilage and intervertebral disc. FEBS Lett 123:195–199

    Article  PubMed  CAS  Google Scholar 

  8. Ayad S, Abedin MZ, Weiss JB, Grundy SM (1982) Characterisation of another short-chain disulphide-bonded collagen from cartilage, vitreous and intervertebral disc. FEBS Lett 139: 300–304

    Article  PubMed  CAS  Google Scholar 

  9. Ayotte D, Ito K, Tepic S, Perren SM (2000) Direction-dependent constriction flow in a poroelastic solid: the intervertebral disc valve. J Biomech Eng 122:587–593

    Article  PubMed  CAS  Google Scholar 

  10. Bernick S, Cailliet R (1982) Vertebral end-plate changes with aging of human vertebrae. Spine 7:97–102

    Article  PubMed  CAS  Google Scholar 

  11. Boos N, Nerlich AG, Wiest I, von der Mark K, Aebi M (1997) Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem Cell Biol 108:471–480

    Article  PubMed  CAS  Google Scholar 

  12. Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20:1307–1314

    PubMed  CAS  Google Scholar 

  13. Chin JR, Murphy G, Werb Z (1985) Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. J Biol Chem 260: 12367–12376

    PubMed  CAS  Google Scholar 

  14. Cole TC, Ghosh P, Taylor TK (1986) Variations of the proteoglycans of the canine intervertebral disc with ageing. Biochim Biophys Acta 880:209–219

    Article  PubMed  CAS  Google Scholar 

  15. Cole TC, Melrose J, Ghosh P (1989) Isolation and characterisation of a neutral proteinase from the canine intervertebral disc. Biochim Biophys Acta 990:254–262

    Article  PubMed  CAS  Google Scholar 

  16. Crean JK, Roberts S, Jaffray DC, Eisenstein SM, Duance VC (1997) Matrix metalloproteinases in the human intervertebral disc: role in disc degeneration and scoliosis. Spine 15: 2877–2884

    Article  Google Scholar 

  17. Eyre DR (1988) Collagens of the disc. In: Ghosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton, pp171–188

    Google Scholar 

  18. Eyre DR (1989) The intervertebral disc. B. Basic sciences perspectives. In: Frymoyer JW, Gordon SL (eds) New perspectives on low back pain. American Academy of Orthopaedic Surgeons, Park Ridge, pp 147–207

    Google Scholar 

  19. Freije JM, Diez-Itza I, Balbin M, Sanchez LM, Blasco R, Tolivia J, Lopez-Otin C (1994) Molecular cloning and expression of collagenase-3: a novel human matrix metallopro-teinase produced by breast carcinomas. J Biol Chem 269:16766–16773

    PubMed  CAS  Google Scholar 

  20. Goudsouzian NM, Aebi M, Alini M (1999) In situ hybridization of collagen types I and II RNA expression in the bovine intervertebral disc: variation with age. Trans Orthop Res Soc 24:814

    Google Scholar 

  21. Gower WE, Pedrini V (1969) Age-related variations in proteinpolysaccha-rides from human nucleus pulposus, annulus fibrosus, and costal cartilage. J Bone Joint Surg Am 51:1154–1162

    PubMed  CAS  Google Scholar 

  22. Gruber HE, Hanley EN (1998) Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine 23:751–757

    Article  PubMed  CAS  Google Scholar 

  23. Hascall VC (1977) Interaction of cartilage proteoglycans with hyaluronic acid. J Supramolec Struc 7:101–120

    Article  CAS  Google Scholar 

  24. Heathfield TF, Goudsouzian NM, Aebi M, Alini M (1998) Effect of TGF-betal on proteoglycan synthesis in isolated intervertebral disc cells. Trans Orthop Res Soc 22:149

    Google Scholar 

  25. Heinegard D, Axelsson I (1977) Distribution of keratan sulfate in cartilage proteoglycans. J Biol Chem 252:1971–1979

    PubMed  CAS  Google Scholar 

  26. Holm S, Moroudas A, Urban JPG, Sestam G, Nachemson A (1981) Nutrition of the intervertebral disc: somite transport and mechanism. Connect Tissue Res 8:101–108

    Article  PubMed  CAS  Google Scholar 

  27. Hutton WC, Toribatake Y, Elmer WA, Ganey TM, Tomita K, Whitesides TE (1998) The effect of compressive force applied to the intervertebral disc in vivo. A study of proteoglycans and collagen. Spine 23:2524–2537

    Article  PubMed  CAS  Google Scholar 

  28. Iatridis JC, Mente PL, Stokes IAF, Aronsson DD, Alini M (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24:996–1002

    Article  PubMed  CAS  Google Scholar 

  29. Johnstone B, Markopoulos M, Neame P, Caterson B (1993) Identification and characterization of glycanated and nonglycanated forms of biglycan and decorin in the human intervertebral disc. Biochem J 292:661–666

    PubMed  CAS  Google Scholar 

  30. Kazarian L (1975) Creep characteristics of the human spinal column. Orthop Clin North Am 6:3–18

    PubMed  CAS  Google Scholar 

  31. Keller T, Spengler D, Hansson T (1987) Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading. J Orthop Res 5:467–478

    Article  PubMed  CAS  Google Scholar 

  32. Kiviranta I, Jurvelin J, Tammi M, Saamanen AM, Helminen HJ (1987) Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum 30:801–809

    Article  PubMed  CAS  Google Scholar 

  33. Lee CK (1988) Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 13:375–377

    Article  PubMed  CAS  Google Scholar 

  34. Liu J, Roughley PJ, Mort JS (1991) Identification of human intervertebral disc stromelysin and its involvement in matrix degradation. J Orthop Res 9: 568–575

    Article  PubMed  CAS  Google Scholar 

  35. Liu L-S, Thompson AY, Heidaran MA, Poser JW, Spiro RC (1999) A novel collagen/hyaluronate bone-grafting matrix. Biomaterials 20:1097–1108

    Article  PubMed  CAS  Google Scholar 

  36. Lotz JC, Chin SR (2000) Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine 25:1477–1483

    Article  PubMed  CAS  Google Scholar 

  37. Lyons G, Eisenstein SM, Sweet MB (1981) Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 673:443–453

    Article  PubMed  CAS  Google Scholar 

  38. Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc annulus fibrosus. Spine 15: 402–410

    Article  PubMed  CAS  Google Scholar 

  39. Melrose J, Ghosh P, Taylor TK (1987) Neutral proteinases of the human intervertebral disc. Biochim Biophys Acta 923:483–495

    Article  PubMed  CAS  Google Scholar 

  40. Miller J, Schmatz C, Schultz AB (1988) Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine 13: 173–178

    Article  PubMed  CAS  Google Scholar 

  41. Murphy G, Cockett MI, Stephens PE, Smith BJ, Docherty AJ (1987) Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes. Biochem J 248: 265–268

    PubMed  CAS  Google Scholar 

  42. Myers B, McElhaney J, Doherty B (1991) The viscoelastic responses of the human cervical spine in torsion: experimental limitations of quasi-linear theory, and a method for reducing these effects. J Biomech 9: 811–817

    Article  Google Scholar 

  43. Nguyen Q, Murphy G, Roughley PJ, Mort JS (1989) Degradation of proteoglycan aggregate by a cartilage metalloproteinase. Evidence for the involvement of stromelysin in the generation of link protein heterogeneity in situ. Biochem J 259:61–67

    PubMed  CAS  Google Scholar 

  44. Nilsson B, De Luca S, Lohmander S, Hascall VC (1982) Structures of N-linked and O-linked oligosaccharides on proteoglycan monomer isolated from the Swarm rat chondrosarcoma. J Biol Chem 257:10920–10927

    PubMed  CAS  Google Scholar 

  45. Ohshima H, Urban JPG, Bergel DH (1995) Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res 13:22–29

    Article  PubMed  CAS  Google Scholar 

  46. Okada Y, Nagase H, Harris ED Jr (1986) A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J Biol Chem 261:14245–14255

    PubMed  CAS  Google Scholar 

  47. Okada Y, Konomi H, Yada T, Kimata K, Nagase H (1989) Degradation of type IX collagen by matrix metalloproteinase 3 (stromelysin) from human rheumatoid synovial cells. FEBS Letts 244:473–476

    Article  CAS  Google Scholar 

  48. Paassilta P, Lohiniva J, Goring HH, Perala M, Raina SS, Karppinen J, Hakala M, Palm T, Kroger H, Kaitila I, Vanharanta H, Ott J, Ala-Kokko L (2001) Identification of a novel common genetic risk factor for lumbar disk disease. J Am Med Assoc 285:1843–1849

    Article  CAS  Google Scholar 

  49. Pearce R (1993) Morphologic and chemical aspects of aging. In: Buckwaiter JA, Goldberg VM, Woo SLY (eds) Musculoskeletal soft-tissue ageing. Impact on mobility. American Academy of Orthopaedic Surgeons, Rosemont, pp 363–379

    Google Scholar 

  50. Roberts S, Menage J, Eisenstein SM (1993) The cartilage end plate and intervertebral disc in scoliosis: calcification and other sequelae. J Orthop Res 11:747–757

    Article  PubMed  CAS  Google Scholar 

  51. Roberts S, Urban JP, Evans H, Eisenstein SM (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21:415–420

    Article  PubMed  CAS  Google Scholar 

  52. Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 25:3005–3013

    Article  PubMed  CAS  Google Scholar 

  53. Roughley PJ, White RJ, Magny MC, Liu J, Pearce RH, Mort JS (1993) Non-proteoglycan forms of biglycan increase with age in human articular cartilage. Biochem J 295:421–426

    PubMed  CAS  Google Scholar 

  54. Schlegel J, Smith J, Schleusener R (1996) Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine 21: 970–981

    Article  PubMed  CAS  Google Scholar 

  55. Schlondorff J, Blobel CP (1999) Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci 112:3603–3617

    PubMed  CAS  Google Scholar 

  56. Sztrolovics R, Alini M, Mort JS, Roughley PJ (1997) Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 326:235–241

    PubMed  CAS  Google Scholar 

  57. Sztrolovics R, Alini M, Mort JS, Roughley PJ (1999) Age-related changes in fibromodulin and lumican in human intervertebral discs. Spine 24:1765–1771

    Article  PubMed  CAS  Google Scholar 

  58. Sztrolovics R, Grover J, Cs-Szabo G, Shi SL, Zhang Y, Mort JS, Roughley PJ (2002) The characterization of ver-sican and its message in human articular cartilage and intervertebral disc. J Orthop Res 20:257–266

    Article  PubMed  Google Scholar 

  59. Tang BL (2001) ADAMTS: a novel family of extracellular matrix proteases. Intl J Biochem Cell Biol 33:33–44

    Article  CAS  Google Scholar 

  60. Turner JA, Ersek M, Herron L, Haselkorn J, Kent D, Ciol MA, Deyo R (1992) Patient outcomes after lumbar spinal fusions. JAMA 268:907–911

    Article  PubMed  CAS  Google Scholar 

  61. Wei L, Heidaran M, Liu S-L, Spiro R, Aebi M, Alini M (2000) Intervertebral disc cell-seeded implants: a preliminary study. Trans Orthop Res Soc 25: 754

    Google Scholar 

  62. Wu JJ, Eyre DR, Slayter HS (1987) Type VI collagen of the intervertebral disc. Biochemical and electron-microscopic characterization of the native protein. Biochem J 248:373–381

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alini, M., Roughley, P.J., Antoniou, J., Stoll, T., Aebi, M. (2004). A biological approach to treating disc degeneration: not for today, but maybe for tomorrow. In: Gunzburg, R., Mayer, H.M., Szpalski, M., Aebi, M. (eds) Arthroplasty of the Spine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18508-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18508-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20295-0

  • Online ISBN: 978-3-642-18508-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics