Skip to main content

Rationale, principles and experimental evaluation of the concept of soft stabilization

  • Conference paper
Arthroplasty of the Spine

Abstract

The apparent clinical success of spinal stabilization methods that restrict rather than abolish movement in relieving mechanical back pain indicates that the concept of the aetiology of back pain should be reviewed. Further understanding of how degeneration affects disc biomechanics, and an understanding of how current soft stabilization systems alters them, may allow us to define more precisely what are the essential requirements of an ideal soft stabilization system. It appears that abnormal patterns of loading rather than abnormal movement are the reason that disc degeneration causes back pain in some patients. Abnormal load transmission is the principal cause of pain in osteoarthritic joints, and both osteotomy and, indeed, joint replacement succeed because they alter the load transmission across the joint. This concept is supported by the fact that abnormal patterns of stress distribution measured across the disc correlate with painful discs on discography. Clinically, it is often noted that back pain is primarily related to position or posture, rather than movement of the lumbar spine. Clinical success after solid fusion is unpredictable because it does not necessarily prevent painful loading across the disc, and also it may interfere with maintenance of sagittal balance in varying postures. The Graf ligament restricted flexion, and was modestly successful. It unfortunately increased the load over the posterior annulus. The Dynesys system reduces movement both in flexion and extension, and appears to be more successful. However, often it also unloads the disc to a degree that is unpredictable. The authors believe that this unloading of the disc is an important feature of a flexible stabilization system. A new a design of a flexible stabilization system has recently been described in an in vitro study, which unloads the disc by introduction of a load-sharing fulcrum near the axis of movement together with an elastic posterior ligament. This design produces maximal unloading of the disc, whilst allowing a restricted range of movement, which serves the important purpose of allowing the patient to maintain sagittal balance in varying postures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agazzi S, Reverdin A, May D (1999) Posterior lumbar interbody fusion with cages: an independent review of 71 cases. J Neurosurg 91[2 Suppl]:186–192

    PubMed  CAS  Google Scholar 

  2. Ariga K, Miyamoto S, Nakase T, Okuda S, Meng W, Yonenobu K, Yoshikawa H (2001) The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine. 26:2414–2420

    Article  PubMed  CAS  Google Scholar 

  3. Boos N, Webb JK (1997) Pedicle screw fixation in spinal disorders: a European view. Eur Spine J 6:2–18

    Article  PubMed  CAS  Google Scholar 

  4. Brinckmann P, Porter RW (1994) A laboratory model of lumbar disc protrusion. Fissure and fragment. Spine. 19:228–235

    Article  CAS  Google Scholar 

  5. Dvorak J, Panjabi MM, Chang DG, Theiler R, Grob D (1991) Functional radiographic diagnosis of the lumbar spine. Flexion-extension and lateral bending. Spine. 16:562–571

    Article  PubMed  CAS  Google Scholar 

  6. ô.Fujiwara A, Tamai K, An HS, Kurihashi T, Lim TH, Yoshida H, Saotome K (2000) The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine. J Spinal Disord 13:444–450

    Article  Google Scholar 

  7. Fujiwara A, Lim TH, An HS, Tanaka N, Jeon CH, Andersson GB, Haughton VM (2000) The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 25:3036–3044

    Article  PubMed  CAS  Google Scholar 

  8. Gibson JN, Grant IC, Waddell G (1999) The Cochrane review of surgery for lumbar disc prolapse and degenerative lumbar spondylosis. Spine 24: 1820–1832

    Article  PubMed  CAS  Google Scholar 

  9. Goupille P, Jayson MI, Valat JP, Freemont AJ (1998) Matrix metallo-proteinases: the clue to intervertebral disc degeneration? Spine 23:1612–1626

    Article  PubMed  CAS  Google Scholar 

  10. Graf H (1992) Lumbar instability. Surgical treatment without Fusion. Rachis 412:123–137

    Google Scholar 

  11. Grevitt MP, Gardner AD, Spilsbury J, Shackleford IM, Baskerville R, Pursell LM, Hassaan A, Mulholland RC (1995) The Graf stabilisation system: early results in 50 patients. Eur Spine J 4:169–175; [discussion p 135]

    Article  PubMed  CAS  Google Scholar 

  12. Hukins DW (1992) A simple model for the function of proteoglycans and collagen in the response to compression of the intervertebral disc. Proc R Soc Lond B Biol Sci 249:281–285

    Article  CAS  Google Scholar 

  13. Krag MH, Seroussi RE, Wilder DG, Pope MH (1987) Internal displacement distribution from in vitro loading of human thoracic and lumbar spinal motion segments: experimental results and theoretical predictions. Spine 12:1001–1007

    Article  PubMed  CAS  Google Scholar 

  14. Lazennec JY, Ramare S, Arafati N, Laudet CG, Gorin M, Roger B, Hansen S, Saillant G, Maurs L, Trabelsi R (2000) Sagittal alignment in lumbosacral fusion: relations between radiological parameters and pain. Eur Spine J 9:47–55

    Article  PubMed  CAS  Google Scholar 

  15. McAfee PC (1999) Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg Am 81: 859–880

    PubMed  CAS  Google Scholar 

  16. McMillan DW, McNally DS, Garbutt G, Adams MA (1996) Stress distributions inside intervertebral discs: the validity of experimental “stress profilometry”. Proc Inst Mech Eng [H]. 210: 81–87

    CAS  Google Scholar 

  17. McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17:66–73

    Article  PubMed  CAS  Google Scholar 

  18. McNally DS, Shackleford IM, Goodship AE, Mulholland RC (1996) In vivo stress measurement can predict pain on discography. Spine 21:2580–2587

    Article  PubMed  CAS  Google Scholar 

  19. Mochida J, Toh E, Suzuki K, Chiba M, Arima T (1997) An innovative method using the Leeds-Keio artificial ligament in the unstable spine. Orthopedics 20:17–23

    PubMed  CAS  Google Scholar 

  20. Mochida J, Suzuki K, Chiba M (1999) How to stabilize a single level lesion of degenerative lumbar spondylolisthesis. Clin Orthop 368:126–134

    PubMed  Google Scholar 

  21. Moore RJ, Vernon-Roberts B, Fraser RD, Osti OL, Schembri M (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine 21: 2149–2155

    Article  PubMed  CAS  Google Scholar 

  22. Nachemson A (1975) Towards a better understanding of low-back pain: a review of the mechanics of the lumbar disc. Rheumatol Rehabil 14:129–143

    Article  PubMed  CAS  Google Scholar 

  23. Nishida K, Kang JD, Suh JK, Robbins PD, Evans CH, Gilbertson LG (1998) Adenovirus-mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine 23:2437–2442; [discussion 2443]

    Article  PubMed  CAS  Google Scholar 

  24. Polikeit A, Nolte L-P (2000) Factors affecting the behaviour of interbody cages in the lumbar spine-finite element analysis. Proceedings of the ISSLS Annual Meeting, Adelaide, 2000, p 215

    Google Scholar 

  25. Rajaratnam SS, Mueller M, Shepperd JAN, Mulholland RC (2002) Dynesis stabilization of the lumbo-sacral spine. Poster presentation presented at Britspine 2002, The Second Combined Meeting of the BSS BASS BCSS SBPR, Birmingham, 27 February–1 March

    Google Scholar 

  26. Schofferman J, Slosar P, Reynolds J, Goldthwaite N, Koestler M (2001) A prospective randomized comparison of 270 degrees fusions to 360 degrees fusions (circumferential fusions). Spine 26:E207–212

    Article  PubMed  CAS  Google Scholar 

  27. Schultz A, Andersson G, Ortengren R, Haderspeck K, Nachemson A (1982) Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J Bone Joint Surg Am 64:713–720

    PubMed  CAS  Google Scholar 

  28. Sengupta DK, Guyer RD, Hochschuler S, Mulholland RC (1999) Fulcrum assisted soft stabilisation in the treatment of low back pain — a new concept. Proceedings of the ISSLS Annual Meeting, Hawaii, 1999, p 20

    Google Scholar 

  29. Sengupta DK, Webb JK, Mulholland RC (2001) Can soft stabilization in the lumbar spine unload the disc and retain mobility? A biomechanical study with fulcrum assisted soft stabilization on cadaver spine. Proceedings of the ISSLS Annual Meeting, Edinburgh, 2001, p 129

    Google Scholar 

  30. Simpson EK, Parkinson IH, Manthey B, Fazzalari NL (2001) Intervertebral disc disorganization is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 16:681–687

    Article  PubMed  CAS  Google Scholar 

  31. Smith D, McMurray N, Disler P (2002) Early intervention for acute back injury: can we finally develop an evidence-based approach? Clin Rehabil 16:1–11

    Article  PubMed  Google Scholar 

  32. Suzuki K, Mochida J, Chiba M, Kikugawa H (1999) Posterior stabilization of degenerative lumbar spondylolisthesis with a Leeds-Keio artificial ligament. A biomechanical analysis in a porcine vertebral model. Spine. 24:26–31

    Article  PubMed  CAS  Google Scholar 

  33. Whitecloud TS 3rd, Castro FP Jr, Brinker MR, Hartzog CW Jr, Ricciardi JE, Hill C (1998) Degenerative conditions of the lumbar spine treated with intervertebral titanium cages and posterior instrumentation for circumferential fusion. J Spinal Disord 11:479–486

    Article  PubMed  Google Scholar 

  34. Zdeblick TA (1993) A prospective, randomized study of lumbar fusion. Preliminary results. Spine 18:983–991

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Mulholland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mulholland, R.C., Sengupta, D.K. (2004). Rationale, principles and experimental evaluation of the concept of soft stabilization. In: Gunzburg, R., Mayer, H.M., Szpalski, M., Aebi, M. (eds) Arthroplasty of the Spine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18508-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18508-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20295-0

  • Online ISBN: 978-3-642-18508-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics