Skip to main content

The objectives for the mechanical evaluation of spinal instrumentation have changed

  • Conference paper
Arthroplasty of the Spine
  • 183 Accesses

Abstract

The objectives for the mechanical evaluation of spinal implants have changed because many modern devices are designed to modify the mechanics of the disc rather than to simply fix the segment. This means that a biomechanical objective must be decided, a priori, for a particular device. It is then relatively straightforward to design a biomechanical evaluation protocol that can either test whether this objective is fulfilled, or optimise the device in the context of the objective. Because’ soft stabilisation’ systems are soft, their performance is affected by the magnitude of the loading sustained by the bridged segment. This means that is vital to reproduce a realistic loading regime for the biomechanical evaluation, if its results are to be relevant to a clinical problem. Similarly, the condition of the segment in terms of disc degeneration, facet joint condition, etc. affect the mechanical performance of the segment and must be relevant to the performance objectives set for the device. Loading protocols for testing short and long segments are discussed. Since the aim of many spinal devices is to modify the loading of the intervertebral disc, it is important to quantify their effect in terms of how both the internal loads and deformations are changed. A number of different technologies for quantifying both loads and deformations in intact discs are described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abumi K, Panjabi MM, Duranceau J (1989) Biomechanical evaluation of spinal fixation devices. III. Stability provided by six spinal fixation devices and interbody bone graft. Spine 14: 1249–1255

    Article  PubMed  CAS  Google Scholar 

  2. Adams MA, McNally DS, Dolan P (1996) ’stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78:965–972

    Article  PubMed  CAS  Google Scholar 

  3. Brinckmann P, Grootenboer H (1991) Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. Spine 16:641–646

    Article  PubMed  CAS  Google Scholar 

  4. Brinckmann P, Horst M (1985) The influence of vertebral body fracture, intradiscal injection, and partial discectomy on the radial bulge and height of human lumbar discs. Spine 10:138–145

    Article  PubMed  CAS  Google Scholar 

  5. Brinckmann P, Frobin W, Hierholzer E, Horst M (1983) Deformation of the vertebral end-plate under axial loading of the spine. Spine 8:851–856

    Article  PubMed  CAS  Google Scholar 

  6. Chiu EJ, Newitt DC, Segal MR, Hu SS, Lotz JC, Majumdar S (2001) Magnetic resonance imaging measurement of relaxation and water diffusion in the human lumbar intervertebral disc under compression in vitro. Spine 26:E437–444

    Article  PubMed  CAS  Google Scholar 

  7. Cripton PA, Bruehlmann SB, Orr TE, Oxland TR, Nolte LP (2000) In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts. J Biomech 33: 1559–1568

    Article  PubMed  CAS  Google Scholar 

  8. Duffield RC, Carson WL, Chen LY, Voth B (1993) Longitudinal element size effect on load sharing, internal loads, and fatigue life of tri-level spinal implant constructs. Spine 18:1695–1703

    Article  PubMed  CAS  Google Scholar 

  9. Edwards AG, McNally DS, Mulholland RC, Goodship AE (1997) The effects of posterior fixation on internal intervertebral disc mechanics. J Bone Joint Surg Br 79:154–160

    Article  PubMed  CAS  Google Scholar 

  10. Hickey DS, Hukins DWL (1980) X-ray diffraction studies of the arrangement of collagenous fibres in human fetal intervertebral disc. J Anat 131:81–90

    PubMed  CAS  Google Scholar 

  11. Holmes AD, Hukins DW, Freemont AJ (1993) End-plate displacement during compression of lumbar vertebra-discvertebra segments and the mechanism of failure. Spine 18:128–135

    Article  PubMed  CAS  Google Scholar 

  12. Hsu EW, Setton LA (1999) Diffusion tensor microscopy of the intervertebral disc anulus fibrosus. Magn Reson Med 41:992–999

    Article  PubMed  CAS  Google Scholar 

  13. Johnson S, Halliwell M, Jones M, Mc-Nally D (2001) Visualisation of collagen fibre bundles in the intact intervertebral disc. J Biomech 34:S12–S13

    Google Scholar 

  14. Klein JA, Hukins DWL (1982) Collagen fibre orientation in the annulus fibrosus of intervertebral disc during bending and torsion measured by X-ray diffraction. Biochim Biophys Acta 719:98–101

    Article  PubMed  CAS  Google Scholar 

  15. Klein JA, Hukins DWL (1982) X-ray diffraction demonstrates reorientation of collagen fibres in the annulus fibrosus during compression of the intervertebral disc. Biochim Biophys Acta 717: 61–64

    Article  PubMed  CAS  Google Scholar 

  16. Krag MH, Seroussí RE, Wilder DG, Pope MH (1987) Internal displacement distribution from in-vitro loading of human thoracic and lumbar spinal motion segments: experimental results and theoretical predictions. Spine 12:1001–1007

    Article  PubMed  CAS  Google Scholar 

  17. Lim TH, Goel VK, Weinstein JN, Kong W (1994) Stress analysis of a canine spinal motion segment using the finite element technique. J Biomech 27:1259–1269

    Article  PubMed  CAS  Google Scholar 

  18. Maiman DJ, Kumaresan S, Yoganandan N, Pintar FA (1999) Biomechanical effect of anterior cervical spine fusion on adjacent segments. Biomed Mater Eng 9:27–38

    PubMed  CAS  Google Scholar 

  19. Mannion AF, Adams MA, Dolan P (2000) Sudden and unexpected loading generates high forces on the lumbar spine. Spine 25:842–852

    Article  PubMed  CAS  Google Scholar 

  20. Marras WS, Davis KG, Ferguson SA, Lucas BR, Gupta P (2001) Spine loading characteristics of patients with low back pain compared with asymptomatic individuals. Spine 26:2566–2574

    Article  PubMed  CAS  Google Scholar 

  21. McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17:66–73

    Article  PubMed  CAS  Google Scholar 

  22. McNally DS, Adams MA, Goodship AE (1992) Development and validation of a new transducer for intradiscal pressure measurement. J Biomed Eng 14:495–498

    Article  PubMed  CAS  Google Scholar 

  23. McNally DS, Adams MA, Goodship AE (1993) Can intervertebral disc prolapse be predicted by disc mechanics. Spine 18:1525–1530

    PubMed  CAS  Google Scholar 

  24. McNally DS, Shackleford IM, Goodship AE, Mulholland RC (1996) In-vivo stress measurement can predict pain on discography. Spine 21:2580–2587

    Article  PubMed  CAS  Google Scholar 

  25. McNally DS, Naish C, Halliwell M (2000) Intervertebral disc structure: observation by a novel use of ultrasound imaging. Ultrasound Med Biol 26:751–758

    Article  PubMed  CAS  Google Scholar 

  26. Miura T, Panjabi MM, Cripton PA (2002) A method to simulate in vivo cervical spine kinematics using in vitro compressive preload. Spine 27:43–48

    Article  PubMed  Google Scholar 

  27. Nachemson AL (1963) The influence of spinal movements on the lumbar intradiscal pressure and on the tensile stresses in the annulus fibrosus. Acta Orthop Scand 33:183–207

    Article  PubMed  CAS  Google Scholar 

  28. Nachemson AL (1966) Mechanical stresses on lumbar disks. Current Practice in Orthopaedic Surgery 3:208–224

    PubMed  CAS  Google Scholar 

  29. Nachemson AL (1981) Disc pressure measurements. Spine 6:93–97

    Article  PubMed  CAS  Google Scholar 

  30. Nachemson AL, Morris JM (1963) Lumbar discometry: lumbar intradiscal pressure measurements in-vivo. Lancet May 25:1140–1142

    Article  Google Scholar 

  31. Naish C, Mitchell R, Innes J, Halliwell M, McNally D (2001) Ultrasound imaging of the intervertebral disc. Proceedings of the 47th Meeting of the Orthopaedic Research Society, San Francisco, p 881

    Google Scholar 

  32. Naylor A, Happey F, Macrae T (1954) The collagenous changes in the intervertebral disk with age and their effect on its elasticity. BMJ September:570–573

    Google Scholar 

  33. Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices. I. A conceptual framework. Spine 13: 1129–1134

    Article  PubMed  CAS  Google Scholar 

  34. Panjabi M, Brown M, Lindahl S, Irstam L, Hermens M (1988) Intrinsic disc pressure as a measure of integrity of the lumbar spine. Spine 13:913–917

    Article  PubMed  CAS  Google Scholar 

  35. Panjabi MM, Abumi K, Duranceau J, Crisco JJ (1988) Biomechanical evaluation of spinal fixation devices. II. Stability provided by eight internal fixation devices. Spine 13:1135–1140

    Article  PubMed  CAS  Google Scholar 

  36. Panjabi MM, Miura T, Cripton PA, Wang JL, Nain AS, DuBois C (2001) Development of a system for in vitro neck muscle force replication in whole cervical spine experiments. Spine 26: 2214–2219

    Article  PubMed  CAS  Google Scholar 

  37. Patwardhan AG, Havey RM, Ghanayem AJ, Diener H, Meade KP, Dunlap B, Hodges SD (2000) Load-carrying capacity of the human cervical spine in compression is increased under a follower load. Spine 25:1548–1554

    Article  PubMed  CAS  Google Scholar 

  38. Pollintine P, Dolan P, Adams M (2001) The load bearing function of apophyseal joints increases with age and disc degeneration. Proceedings of the 47th Annual Meeting of the Orthopaedic Research Society, San Francisco, p 872

    Google Scholar 

  39. Puttlitz CM, Goel VK, Traynelis VC, Clark CR (2001) A finite element investigation of upper cervical instrumentation. Spine 26:2449–2455

    Article  PubMed  CAS  Google Scholar 

  40. Quinnell RC, Stockdale HR, Willis DS (1983) Observations of pressures within normal discs in the lumbar spine. Spine 8:166–169

    Article  PubMed  CAS  Google Scholar 

  41. Rohlmann A, Calisse J, Bergmann G, Weber U (1999) Internal spinal fixator stiffness has only a minor influence on stresses in the adjacent discs. Spine 24:1192–1195; discussion 1195–1196

    Article  PubMed  CAS  Google Scholar 

  42. Rohlmann A, Claes LE, Bergmannt G, Graichen F, Neef P, Wilke HJ (2001) Comparison of intradiscal pressures and spinal fixator loads for different body positions and exercises. Ergonomics 44:781–794

    Google Scholar 

  43. Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26:E557–561

    Article  PubMed  CAS  Google Scholar 

  44. Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24:2468–2474

    Article  PubMed  CAS  Google Scholar 

  45. Seroussi RE, Krag MH, Muller DL, Pope MH (1989) Internal deformations of intact and denucleated human lumbar discs subjected to compression, flexion, and extension loads. J Orthop Res 7:122–131

    Article  PubMed  CAS  Google Scholar 

  46. Shah JS, Hampson WGJ, Jayson MIV (1978) The distribution of surface strain in the cadaveric lumbar spine. J Bone Joint Surg Br 60:246–251

    PubMed  Google Scholar 

  47. Steffen T, Baramki HG, Rubin R, Antoniou J, Aebi M (1998) Lumbar intradiscal pressure measured in the anterior and posterolateral annular regions during asymmetrical loading. Clin Biomech 13:495–505

    Article  Google Scholar 

  48. van Deursen DL, Snijders CJ, Kingma I, van Dieen JH (2001) In vitro torsion-induced stress distribution changes in porcine intervertebral discs. Spine 26: 2582–2586

    Article  PubMed  Google Scholar 

  49. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154

    Article  PubMed  CAS  Google Scholar 

  50. Wilke HJ, Rohlmann A, Neller S, Schultheiss M, Bergmann G, Graichen F, Claes LE (2001) Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator. Spine 26:636–642

    Article  PubMed  CAS  Google Scholar 

  51. Wisleder D, Werner SL, Kraemer WJ, Fleck SJ, Zatsiorsky VM (2001) A method to study lumbar spine response to axial compression during magnetic resonance imaging: technical note. Spine 26:E416–420

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McNally, D.S. (2004). The objectives for the mechanical evaluation of spinal instrumentation have changed. In: Gunzburg, R., Mayer, H.M., Szpalski, M., Aebi, M. (eds) Arthroplasty of the Spine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18508-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18508-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20295-0

  • Online ISBN: 978-3-642-18508-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics