Skip to main content

ACE Inhibitors: Pharmacology

  • Chapter
Book cover Angiotensin Vol. II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 163 / 2))

Abstract

More than IS inhibitors of the angiotensin-converting enzyme (ACE) are now clinically available worldwide. ACE inhibitors can be divided into three chemical classes according to their zinc ligand. They mainly differ in their elimination half-life, potency, lipophilicity and the route of elimination. ACE inhibitors act by blocking the systemic and local generation of angiotensin II (Ang II) from angiotensin I (Ang I) and by inhibiting the degradation of kinins. Experimental studies have shown that both actions of the ACE inhibitors are important for their antihypertensive and organ-protective actions. ACE inhibitors effectively lower blood pressure and prevent or reverse the hypertension-in duced cardiac and vascular structural changes. In addition, ACE inhibitors can improve cardiac function and prevent cardiac remodelling in animals with experimentally induced heart failure and are beneficial when administered at various time points before and after myocardial infarction. ACE inhibitors can effectively prevent or regress endothelial dysfunction, induced, for example, by high blood pressure, and exert antiatherosclerotic effects. Inhibition of the local formation of proinflammatory Ang II has been shown to be a promising therapeutic approach to stabilize plaque and prevent its rupturing. Several studies have also revealed nephroprotective effects of ACE inhibitors. Finally, ACEinhibition improve insulin resistance and insulin sensitivity and reduce albuminuria and microalbuminuria in experimental models of diabetes mellitus . In summary, ACE inhibitors not only lower blood pressure but also positively influence a number of cardiovascular risk factors such as cardiac and vascular hypertrophy, endothelial dysfunction, atherosclerosis or insulin resistance. These effects help to explain their clinical benefit in heart failure, postmyocardial infarction, chronic renal insufficiency and diabetes mellitus

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbate M, Zoja C, Rottoli D, Corna D, Perico N, Bertani T, Remuzzi G (1999) Antiproteinuric therapy while preventing the abnormal protein traffic in proximal tubule abrogates protein-and complement-dependent interstitial inflammation in experimental renal disease. J Am Soc Nephrol 10:804–13

    PubMed  CAS  Google Scholar 

  • Akishita M, Horiuchi M, Yamada H, Zhang L, Shirakami G, Tamura K, Ouchi Y, Dzau VJ (2000) Inflammation influences vascular remodeling through AT2 receptor expression and signaling. Physiol Genomics 2:13–20

    PubMed  CAS  Google Scholar 

  • Akishita M, Shirakami G, Iwai M, Wu L, Aoki M, Zhang L, Toba K, Horiuchi M (2001) Angiotensin converting enzyme inhibit or restrains inflammation-induced vascular injury in mice. J Hypertens 19:1083–8

    PubMed  CAS  Google Scholar 

  • Anderson S, Meyer TW,Rennke HG, Brenner BM(1985) Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest 76:612–619

    PubMed  CAS  Google Scholar 

  • Baillard C, Mansier P, Ennezat PV, Mangin L, Medigue C, Swynghedauw B, Chevalier B (2000) Converting enzyme inhibition normalizes QT interval in spontaneously hypertensive rats. Hypertension 36:350–354

    PubMed  CAS  Google Scholar 

  • Bao G, Gohlke P, Qadri F, Unger T (1992) Chronic kinin receptor blockade attenuates the antihypertensive effect of ramipril. Hypertension 20:74–79

    PubMed  CAS  Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Horovitz ZP, Naylor RJ (1989) Angiotensin II inhibits the release of [3H]acetylcholine from rat entorhinal cortex in vitro. Brain Res 491:136–143

    PubMed  CAS  Google Scholar 

  • Becker RH, Wiemer G, Linz W (1991) Preservation of endothelial function by ramipril in rabbits on a long-term atherogenic diet. J Cardiovasc Pharmacol 18 [ Suppl 2]:5110–5115

    Google Scholar 

  • Berkenboom G, Langer I, Carpentier Y, Grosfils K, Fontaine J (1997) Ramipril prevents endothelial dysfunction induced by oxidized low-density lipoproteins: a bradykinindependent mechanism. Hypertension 30:371–376

    PubMed  CAS  Google Scholar 

  • Bernstein KE, Martin BM, Edwards AS, Bernstein EA (1989) Mouse angiotensin-converting enzyme is a protein composed of two homologous domains. J Bioi Chem 264:11945–11951

    CAS  Google Scholar 

  • Bird JE, Durham SK, Giancarli MR, Gitlitz PH, Pandya DG, Dambach DM, Mozes MM, Kopp JB (1998) Captopril prevents nephropathy in HIV-transgenic mice. J Am Soc Nephrol 9:1441–1447

    PubMed  CAS  Google Scholar 

  • Bishop JE, Kiernan LA, Montgomery HE, Gohlke P, McEwan JR (2000) Raised blood pressure, not renin-angiotensin systems, causes cardiac fibrosis in TGR m(Ren2)27 rats. Cardiovasc Res 47:57–67

    PubMed  CAS  Google Scholar 

  • Boateng SY, Naqvi RU, Koban MU, Yacoub MH, MacLeod KT, Boheler KR (2001) Lowdose ramipril treatment improves relaxation and calcium cycling after established cardiac hypertrophy. Am I Physiol Heart Circ Physiol 280:H1029–H1038

    CAS  Google Scholar 

  • Bohm M, Zolk 0, Flesch M, Schiffer F, Schnabel P, Stasch [P, Knorr A (1998) Effects of angiotensin 11 type 1 receptor blockade and angiotensin-converting enzyme inhibition on cardiac beta-adrenergic signal transduction. Hypertension 31:747–754

    PubMed  CAS  Google Scholar 

  • Bondjers G, Glukhova M, Hansson GK, Postnov YV, Reidy MA, Schwartz SM (1991) Hypertension and atherosclerosis. Cause and effect, or two effects with one unknown cause? Circulation 84:VI2–VI16

    PubMed  CAS  Google Scholar 

  • Brooks WW, Bing OH, Conrad CH, O’Neill L, Crow MT, Lakatta EG, Dostal DE, Baker KM, Boluyt MO (1997) Captopril modifies gene expression in hypertrophied and failing hearts of aged spontaneously hypertensive rats. Hypertension 30:1362–1368

    PubMed  CAS  Google Scholar 

  • Brooks WW, Bing OH, Boluyt MO, Malhotra A, Morgan lP, Satoh N, Colucci WS, Conrad CH (2000) Altered inotropic responsiveness and gene expression of hypertrophied myocardium with captopril. Hypertension 35:1203–1209

    PubMed  CAS  Google Scholar 

  • Brown L, Duce B, Miric G, Sernia C (1999) Reversal of cardiac fibrosis in deoxycorticosterone acetate-salt hypertensive rats by inhibition of the renin-angiotensin system. I Am Soc Nephrol 10 [Suppl 11]:S143–S148

    CAS  Google Scholar 

  • Brown NI, Vaughan DE (1998) Angiotensin-converting enzyme inhibitors. Circulation 97:1411–1420

    PubMed  CAS  Google Scholar 

  • Buikema H, Monnink SH, Tio RA, Crijns HI, de Zeeuw D, van Gilst WH (2000) Comparison of zofenopril and lisinopril to study the role of the sulfhydryl-group in improvement of endothelial dysfunction with ACE-inhibitors in experimental heart failure. Br J Pharmacol 130:1999–2007

    PubMed  CAS  Google Scholar 

  • Biinning P (1987) Kinetic properties of the angiotensin converting enzyme inhibitor ramiprilat. I Cardiovasc Pharmacol 10 [Suppl 7):S31–S35

    Google Scholar 

  • Biinning P, Riordan JF (1985) The functional role of zinc in angiotensin converting enzyme: implications for the enzyme mechanism. J Inorg Biochem 24:183–198

    Google Scholar 

  • Cameron NE, Cotter MA, Robertson S (1992) Angiotensin converting enzyme inhibition prevents development of muscle and nerve dysfunction and stimulates angiogenesis in streptozotocin-diabetic rats. Diabetologia 35:12–18

    PubMed  CAS  Google Scholar 

  • Candido R, Jandeleit-Dahm KA, Cao Z, Nesteroff SP, Burns WC, Twigg SM, Dilley RJ, Cooper ME, Alien TI (2002) Prevention of accelerated atherosclerosis by angiotensinconverting enzyme inhibition in diabetic apolipoprotein E-deficient mice. Circulation 106:246–253

    PubMed  CAS  Google Scholar 

  • Carraway JW, Park S, McCune SA, Holycross BI, Radin MI (1999) Comparison of irbesartan with captopril effects on cardiac hypertrophy and gene expression in heart failure-prone male SHHF/Mcc-fa(cp) rats. J Cardiovasc Pharmacol 33:451–460

    Google Scholar 

  • Chobanian AV, Haudenschild CC, Nickerson C, Hope S (1992) Trandolapril inhibits atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Hypertension 20:473–477

    PubMed  CAS  Google Scholar 

  • Chopra M, McMurray J, Stewart I, Dargie HI, Smith WE (1990) Free radical scavenging: a potentially beneficial action of thiol-containing angiotensin converting enzyme inhibitors. Biochem Soc Trans 18:1184–1185

    PubMed  CAS  Google Scholar 

  • Cohen ML, Kurz KD, Schenck KW (1983) Tissue angiotensin converting enzyme inhibition as an index of the disposition of enalapril (MK-421) and metabolite MK-422. I Pharmacol Exp Ther 226:192–196

    CAS  Google Scholar 

  • Costall B, Coughlan J, Horovitz ZP, Kelly ME, Naylor RJ, Tomkins DM (1989) The effects of ACE inhibitors captopril and SQ29,852 in rodent tests of cognition. Pharmacol Biochem Behav 33:573–579

    PubMed  CAS  Google Scholar 

  • Cruz Cl, Ruiz-Torres P, del Moral RG, Rodriguez-Puyol M, Rodriguez-Puyol D (2000) Age-related progressive renal fibrosis in rats and its prevention with ACE inhibitors and taurine. Am J Physiol Renal Physiol 278:FI22–FI29

    Google Scholar 

  • Ferreira SH, Bartelt DC, Greene LJ (1970) Isolation of bradykinin-potentiating pep tides from Bothrops jararaca venom. Biochemistry 9:2583–2593

    PubMed  CAS  Google Scholar 

  • Flesch M, Schiffer F, Zolk 0, Pinto Y, Stasch JP, Knorr A, Ettelbruck S, Bohrn M (1997) Angiotensin receptor antagonism and angiotensin converting enzyme inhibition improve diastolic dysfunction and Ca(2+ )-ATPase expression in the sarcoplasmic reticulum in hypertensive cardiomyopathy. J Hypertens 15:1001–1009

    PubMed  CAS  Google Scholar 

  • Flores O, Arevalo M, Gallego B, Hidalgo F, Vidal S, Lopez-Novoa JM (1998) Beneficial effect of the long-term treatment with the combination of an ACEinhibitor and a calcium channel blocker on renal injury in rats with 5/6 nephrectomy. Exp Nephrol 6:39–49

    PubMed  CAS  Google Scholar 

  • Fontaine D, Fontaine J, Dupont I, Dessy C, Piech A, Carpentier Y, Berkenboom G (2002) Chronic hydroxymethylglutaryl coenzyme a reductase inhibition and endothelial function of the normocholesterolemic rat: comparison with angiotensin-converting enzyme inhibition. J Cardiovasc Pharmacol 40:172–180

    PubMed  CAS  Google Scholar 

  • Forbes JM, Cooper ME, Thallas V, Burns WC, Thomas MC, Brammar GC, Lee F, Grant SL, Burrell LA, Jerums G, Osicka TM (2002) Reduction of the accumulation of advanced glycation end products by ACEinhibition in experimental diabetic nephropathy. Diabetes 51:3274–3282

    PubMed  CAS  Google Scholar 

  • Frcka G, Lader M (1988) Psychotropic effects of repeated doses of enalapril, propranolol and atenolol in normal subjects. Br I Clin Pharmacol 25:67–73

    CAS  Google Scholar 

  • Fujii M, Wada A, Tsutamoto T, Ohnishi M, Isono T, Kinoshita M (2002) Bradykinin improves left ventricular diastolic function under long-term angiotensin-converting enzyme inhibition in heart failure. Hypertension 39:952–957

    Google Scholar 

  • Gard PR (2002) The role of angiotensin II in cognition and behaviour. Eur I Pharmacol 438:1–14

    CAS  Google Scholar 

  • Gavras H, Brunner HR, Laragh JH, Sealey JE, Gavras I, Vukovich RA (1974) An angiotensin converting-enzyme inhibitor to identify and treat vasoconstrictor and volume factor s in hypertensive patients. N Engl J Med 291:817–821

    PubMed  CAS  Google Scholar 

  • Gilbert RE, Cox A, Wu LL, Allen TJ, Hulthen UL, Jerums G, Cooper ME (1998) Expression of transforming growth factor-beta1 and type IV collagen in the renal tubulointerstitium in experimental diab etes: effects of ACE inhibition. Diabetes 47:414–422

    PubMed  CAS  Google Scholar 

  • Gillies LK, Werstiuk ES, Lee RM (1998) Cross-over study comparing effects of treatment with an angiotensin converting enzyme inhibitor and an angiotensin II type 1 receptor antagonist on cardiovascular changes in hypertension. J Hypertens 16:477–486

    PubMed  CAS  Google Scholar 

  • Gohlke P, Urbach H, Scholkens B, Unger T (1989) Inhibition of converting enzyme in the cerebrospinal fluid of rat s after oral treatment with converting enzyme inhibitors. J Pharmacol Exp Ther 249:609–616

    PubMed  CAS  Google Scholar 

  • Gohlke P, Bünning P, Unger T (1992) Distribution and metabolism of angiotensin I and II in the blood vessel wall. Hypertension 20:151–157

    PubMed  CAS  Google Scholar 

  • Gohlke P, Lamberty V, Kuwer I, Bartenbach S, Schnell A, Linz W, Scholkens BA, Wiemer G, Unger T (1993) Long-term low-dose angiotensin converting enzyme inhibitor treatment increases vascular cyclic guanosine 3’,5’-monophosphate. Hypertension 22:682–687

    PubMed  CAS  Google Scholar 

  • Gohlke P, Linz W, Scholkens BA, Kuwer 1, Bartenbach S, Schnell A, Unger T (1994) Angiotensin-converting enzyme inhibition improves cardiac function. Role of bradykinin. Hypertension 23:411–418

    PubMed  CAS  Google Scholar 

  • Gohlke P, Kuwer L, Schnell A, Amann K, Mall G, Unger T (1997) Blockade of bradykinin B2 receptors prevents the increase in capillary density induced by chronic angiotensin-converting enzyme inhibitor treatment in stroke-prone spontaneously hypertensive rats. Hypertension 29:478–482

    PubMed  CAS  Google Scholar 

  • Goto K, Fujii K, Onaka U, Abe I, Fujishima M (2000a) Angiotensin-converting enzyme inhibitor prevents age-related endothelial dysfunction. Hypertension 36:581–587

    PubMed  CAS  Google Scholar 

  • Goto K, Fujii K, Onaka U, Abe I, Fujishima M (2000b) Renin-angiotensin system blockade improves end otheli al dysfun ction in hypertension. Hypertension 36:575–580

    PubMed  CAS  Google Scholar 

  • Goussev A, Sharov VG, Shimoyama H, Tanimura M, Lesch M, Goldstein S, Sabbah HN (1998) Effects of ACE inhibition on cardiomyocyte apoptosis in dogs with heart failure. Am J Physiol 275:H626–H631

    PubMed  CAS  Google Scholar 

  • Hamaguchi A, Kim S, Wanibuchi H, Iwao H (1997) Imidapril inhibits increased transforming growth factor-beta1 xpression in remnant kidney model. Eur J Pharmacol 331:27–30

    Google Scholar 

  • Hernandez A, Barberi L, Ballerio R, Testini A, Ferioli R, Bolla M, Natali M, Foleo G, Catapano AL (1998) Delapril slows the progression of atherosclerosis and maintains endothelial function in cholesterol-fed rabbits. Atherosclerosis 137:71–76

    PubMed  CAS  Google Scholar 

  • Hernandez-Presa M, Bustos C, Ortego M, Tunon J, Renedo G, Ruiz-Ortega M, Egido J (1997) Angiotensin-converting enzyme inhibition prevents arterial nuclear factorkappa B activation, monocyte chemoattractant protein-l expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 95:1532–1541

    PubMed  CAS  Google Scholar 

  • Hill C, Logan A, Smith C, Gronbaek H, Flyvbjerg A (2001) Angiotensin converting enzyme inhibitor suppresses glomerular transforming growth factor beta receptor expression in experimental diabetes in rats. Diabetologia 44:495–500

    PubMed  CAS  Google Scholar 

  • Horowitz JD, Antman EM, Lorell BH, Barry WH, Smith TW (1983) Potentiation of the cardiovascular effects of nitroglycerin by N-acetyleysteine. Circulation 68:1247–1253

    PubMed  CAS  Google Scholar 

  • Hostetter TH, Rennke HG, Brenner BM (1982) The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med 72:375–380

    PubMed  CAS  Google Scholar 

  • Hu K, Gaudron P, Anders HJ, Weidemann F, Turschner O, Nahrendorf M, Ertl G (1998) Chronic effects of early started angiotensin converting enzyme inhibition and angiotensin ATJ-receptor subtype blockade in rats with myocardial infarction: role of bradykinin. Cardiovasc Res 39:401–412

    PubMed  CAS  Google Scholar 

  • Hugel S, Horn M, de Groot M, Remkes H, Dienesch C, Hu K, Ertl G, Neubauer S (1999) Effects of ACE inhibition and beta-receptor blockade on energy metabolism in rats postmyocardial infarction. Am J Physiol 277:H2167–H2175

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Nakamura T, Takano H, Kimura H, Obata JE, Takeda S, Hata A, Shido K, Mochizuki S, Yoshida Y (2000) Angiotensin II-induced cardiomyocyte hypertrophy and cardiac fibrosis in stroke-prone spontaneously hypertensive rats. J Lab Clin Med 135:353–359

    PubMed  CAS  Google Scholar 

  • Ittner KP, Zimmermann M, Bucher M, Gessele W, Kees F, Kramer BK, Grobecker HF (2000) The effect of urapidil and ramipril on hyperglycemia in streptozotocin diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 361:92–97

    PubMed  CAS  Google Scholar 

  • Jackson B, Cubela RB, Sakaguchi K, Johnston CI (1988) Characterization of angiotensin converting enzyme (ACE) in the testis and assessment of the in vivo effects of the ACEinhibitor perindopril. Endocrinology 123:50–55

    PubMed  CAS  Google Scholar 

  • Jin H, Yang R, Awad TA, Wang F, Li W, Williams SP, Ogasawara A, Shimada B, Williams PM, de Feo G, Paoni NF (2001) Effects of early angiotensin-converting enzyme inhibition on cardiac gene expression after acute myocardial infarction. Circulation 103:736–742

    PubMed  CAS  Google Scholar 

  • Junaid A, Rosenberg ME, Hostetter TH (1997) Interaction of angiotensin II and TGF-beta 1 in the rat remnant kidney. J Am Soc Nephrol 8:1732–1738

    PubMed  CAS  Google Scholar 

  • Kai T Sugimura K Shimada S Kurooka A Ishikawa K (1999) Renin-angiotensin system stimulates cardiac and renal disorders in Tsukuba hypertensive mice. Clin Exp Pharmacol Physiol 26:206–21

    PubMed  CAS  Google Scholar 

  • Kansui Y, Fujii K, Goto K, Abe I, Iida M (2002) Angiotensin II receptor antagonist improves age-related endothelial dysfunction. J Hypertens 20:439–446

    PubMed  CAS  Google Scholar 

  • Kawai H, Fan TH, Dong E, Siddiqui RA, Yatani A, Stevens SY, Liang CS (1999) ACE inhibition improves cardiac NE uptake and attenuates sympathetic nerve terminal abnormalities in heart failure. Am J Physiol 277:HI609–HI617

    Google Scholar 

  • Keaton AK, White CR, Berecek KH (1998) Captopril treatment and its withdrawal prevents impairment of endothelium-dependent responses in the spontaneously hypertensive rat. Clin Exp Hypertens 20:847–866

    PubMed  CAS  Google Scholar 

  • Keen HL, Brands MW, Smith MJ Jr, Hall JE (1998) Maintenance of baseline angiotensin II potentiates insulin hypertension in rats. Hypertension 31:637–642

    PubMed  CAS  Google Scholar 

  • Keidar S, Attias J, Coleman R, Wirth K, Scholkens B, Hayek T (2000) Attenuation of atherosclerosis in apolipoprotein E-deficient mice by ramipril is dissociated from its antihypertensive effect and from potentiation of bradykinin. J Cardiovasc Pharmacol 35:64–72

    PubMed  CAS  Google Scholar 

  • Kelly DJ, COX AJ, Tolcos M, Cooper ME, Wilkinson-Berka JL, Gilbert RE (2002) Attenuation of tubular apoptosis by blockade of the renin-angiotensin system in diabetic Ren-2 rats. Kidney Int 61:31–39

    PubMed  CAS  Google Scholar 

  • Kelly JG, O’Malley K (1990) Clinical pharmacokinetics of the newer ACE inhibitors. A review. Clin Pharmacokinet 19:177–196

    PubMed  CAS  Google Scholar 

  • Kim S, Wanibuchi H, Hamaguchi A, Miura K, Yamanaka S, Jwao H (1997) Angiotensin blockade improves cardiac and renal complications of typ e II diabetic rats. Hypertension 30:1054–1061

    PubMed  CAS  Google Scholar 

  • Kim S, Yoshiyama M, Izumi Y, Kawano H, Kimoto M, Zhan Y, Iwao H (2001) Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation 103:148–154

    PubMed  CAS  Google Scholar 

  • Kobayashi N, Higashi T, Hara K, Shirataki H, Matsuoka H (1999) Effects of imidapril on NOS expression and myocardial remodelling in failing heart of Dahl salt-sensitive hypertensive rats. Cardiovasc Res 44:518–526

    PubMed  CAS  Google Scholar 

  • Kostis JB (1989) Angiotensin-converting enzyme inhibitors. Emerging differences and new compounds. Am J Hypertens 2:57–64

    PubMed  CAS  Google Scholar 

  • Krombach RS, Clair MJ, Hendrick JW, Houck WV, Zellner JL, Kribbs SB, Whitebread S, Mukherjee R, de Gasparo M, Spinale FG (1998) Angiotensin converting enzyme inh ibition, ATl receptor inhibition, and combination therapy with pacing induced heart failure: effects on left ventricular performance and regional blood flow patterns. Cardiovasc Res 38:631–645

    PubMed  CAS  Google Scholar 

  • Kukreja RC, Kontos HA, Hess ML (1990) Captopril and enalaprilat do not scavenge the superoxide anion. Am J Cardiol 65:241–271

    Google Scholar 

  • Lafayette RA, Mayer G, Park SK, Meyer TW (1992) Angiotensin II receptor blockade limits glomerular injury in rats with reduced renal mass. J Clin Invest 90:766–771

    PubMed  CAS  Google Scholar 

  • Laflamme K, Oster L, Cardinal R, de Champlain J (1997) Effects of renin-angiotensin blockade on sympathetic reactivity and beta-adrenergic pathway in the spontaneously hypertensive rat. Hypertension 30:278–287

    Google Scholar 

  • Lapointe N, Blais C Jr, Adam A, Parker T, Sirois MG, Gosselin H, Clement R, Rouleau JL (2002) Comparison of the effects of an angiotensin-converting enzyme inhibitor and a vasopeptidase inhibitor after myocardial infarction in the rat. J Am Coll Cardiol 39:1692–1698

    PubMed  CAS  Google Scholar 

  • Lassila M, Finckenberg P, Pere AK, Vapaatalo H, Nurminen ML (2000) Enalapril and valsartan improve cyclosporine A-induced vascular dysfunction in spontaneously hypertensive rats. Eur J Pharmacol 398:99–106

    PubMed  CAS  Google Scholar 

  • Leckie BJ (2001) The action of salt and captopril on blood pressure in mice with genetic hypertension. J Hypertens 19:1607–1613

    PubMed  CAS  Google Scholar 

  • Leonetti G, Cuspidi C (1995) Choosing the right ACE inhibitor. A guide to selection. Drugs 49:516–535

    PubMed  CAS  Google Scholar 

  • Levijoki J, Pollesello P, Kaheinen P, Haikala H (2001) Improved survival with simendan after experimental myocardial infarction in rats. Eur J Pharmacol 419:243–248

    PubMed  CAS  Google Scholar 

  • Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z, Nattel S (2001) Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 104:2608–2614

    PubMed  CAS  Google Scholar 

  • Li K, Chen X (1987) Protective effects of captopril and enalapril on myocardial ischemia and reperfusion damage of rat. J Mol Cell Cardiol 19:909–915

    PubMed  CAS  Google Scholar 

  • Lichter I, Richardson PJ, Wyke MA (1986) Differential effects of atenolol and enalapril on memory during treatment for essential hypertension. Br J Clin Pharmacol 21:641–645

    PubMed  CAS  Google Scholar 

  • Linz W, Jessen T, Becker RH, Scholkens BA, Wiemer G (1997) Long-term ACEinhibition doubles lifespan of hypertensive rats. Circulation 96:3164–3172

    PubMed  CAS  Google Scholar 

  • Linz W, Schölkens BA, Han YF (1986) Beneficial effects of the converting enzyme inhibitor, ramipril, in ischemic rat hearts. J Cardiovasc Pharmacol 8 [Suppl 10):S91–S99

    Google Scholar 

  • Linz W, Schökens BA, Ganten D (1989) Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens A 11:1325–50

    PubMed  CAS  Google Scholar 

  • Linz W, Wiemer G, Gohlke P, Unger T, Scholkens BA (1995) Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharmacol Rev 47:25–49

    PubMed  CAS  Google Scholar 

  • Linz W, Wohlfart P, Schoelkens BA, Becker RH, Malinski T, Wiemer G (1999a) Late treatment with ramipril increases survival in old spontaneously hypertensive rats. Hypertension 34:291–295

    PubMed  CAS  Google Scholar 

  • Linz W, Wohlfart P, Scholkens BA, Malinski T, Wiemer G (1999b) Interactions among ACE, kinins and NO. Cardiovasc Res 43:549–561

    PubMed  CAS  Google Scholar 

  • Lopez-Hernandez FJ, Carron R, Montero MJ, Flores O, Lopez-Novoa JM, Arevalo MA (1999) Antihypertensive effect of trandolapril and verapamil in rats with induced hypertension. J Cardiovasc Pharmacol 33:748–755

    PubMed  CAS  Google Scholar 

  • Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    PubMed  CAS  Google Scholar 

  • Ma M, Watanabe K, Wahed MI, Inoue M, Sekiguchi T, Kouda T, Ohta Y, Nakazawa M, Yoshida Y, Yamamoto T, Hanawa H, Kodama M, Fuse K, Aizawa Y (2001) Inhibition of progression of heart failure and expression of TGF-beta 1 mRNA in rats with heart failure by the ACE inhibitor quinapril. J Cardiovasc Pharmacol 38[Suppll):S51–S54

    PubMed  CAS  Google Scholar 

  • Mackie FE, Meyer TW, Campbell DJ (2002) Effects of antihypertensive therapy on intrarenal angiotensin and bradykinin levels in experimental renal insufficiency. Kidney Int 61:555–563

    PubMed  CAS  Google Scholar 

  • Makino T, Hattori Y, Matsuda N, Onozuka H, Sakuma I, Kitabatake A (2003) Effects of angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on beta-adrenoceptor signaling in heart failure produced by myocardial Infarction in rabbits: reversal of altered expression ofbeta-adrenoceptor kinase and G i alpha. J Pharmacol Exp Ther 304:370–379

    PubMed  CAS  Google Scholar 

  • Mannisto TK, Karvonen KE, Kerola TV, Ryhanen LJ (2001) Inhibitory effect of the angiotensin convert ing enzyme inhibitors captopril and enalapril on the conversion of pro collagen to collagen. J Hypertens 19:1835–1839

    PubMed  CAS  Google Scholar 

  • Martorana PA, Ruetten H, Goebel B, Koehl D, Roegner B, Schoelkens BA, Keil M (1999) Ramiprilat prevents the development of acute coronary endothelial dysfunction in the dog. Basic Res Cardiol 94:238–245

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Morishita R, Moriguchi A, Tomita N, Aoki M, Sakonjo H, Nakamura T, Higaki J, Ogihara T (2001) Inhibition of neointima by angiotensin-converting enzyme inhibitor in porcine coronary artery balloon-injury model. Hypertension 37:270–274

    PubMed  CAS  Google Scholar 

  • McLennan SV, Kelly DJ, Cox AJ, Cao Z, Lyons JG, Yue DK, Gilbert RE (2002) Decreased matrix degradation in diabetic nephropathy: effects of ACEinhibition on the expression and activities of matrix metalloproteinases. Diabetologia 45:268–275

    PubMed  CAS  Google Scholar 

  • Meggs LG, Garrick R, Chander P, Ben-Ari J, Gammon D, Goodman AI (1988) Amelioration of systemic hypertension by converting enzyme inhibition in the renal ablation model. Am J Hypertens 1:190–192

    PubMed  CAS  Google Scholar 

  • Mehta AA, Patel S, Santani DD, Goyal RK (1999) (Effect of nifedipine and enalapril on insulin-induced glucose disposal in spontaneous hypertensive and diabetic rats. Clin Exp Hypertens 21:51–59

    PubMed  CAS  Google Scholar 

  • Mehta JL, Nicolini FA, Lawson DL (1990) Sulfhydryl group in angiotensin converting enzyme inhibitors and superoxide radical formation. J Cardiovasc Pharmacol 16:847–849

    PubMed  CAS  Google Scholar 

  • Metelitsa VI, Martsevich S, Kozyreva MP, Slastnikova ID (1992) Enhancement of the efficacy of isosorbide dinitrate by captopril in stable angina pectoris. Am J Cardiol 69:291–296

    Google Scholar 

  • Mifsud SA, Skinner SL, Cooper ME, Kelly DJ, Wilkinson-Berka JL (2002) Effects of lowdose and early versus late perindopril treatment on the progression of severe diabetic nephropathy in (mREN-2)27 rats. J Am Soc Nephrol 13:684–692

    PubMed  CAS  Google Scholar 

  • Milavetz JJ, Raya TE, Johnson CS, Morkin E, Goldman S (1996) Survival after myocardial infarction in rats: captopril versus losartan. J Am Coli Cardiol 27:714–719

    CAS  Google Scholar 

  • Moravski CJ, Kelly DJ, Cooper ME, Gilbert RE, Bertram JF, Shahinfar S, Skinner SL, Wilkinson-Berka JL (2000) Retinal neovascularization is prevented by blockade of the renin-angiotensin system. Hypertension 36:1099–1104

    PubMed  CAS  Google Scholar 

  • Mori T, Nishimura H, Okabe M, Ueyama M, Kubota J, Kawamura K (1998) Cardioprotective effects of quinapril after myocardial infarction in hypertensive rats. Eur J Pharmacol 348:229–234

    PubMed  CAS  Google Scholar 

  • Mulder P, Compagnon P, Devaux B, Richard V, Henry JP, Elfertak L, Wimart MC, Thibout E, Comoy E, Mace B, Thuillez C (1997a) Response of large and small vessels to alpha and beta adrenoceptor stimulation in heart failure: effect of angiotensin converting enzyme inhibition. Fundam Clin Pharmacol 11:221–230

    PubMed  CAS  Google Scholar 

  • Mulder P, Devaux B, Richard V, Henry JP, Wimart MC, Thibout E, Mace B, Thuillez C (1997b) Early versus delayed angiotensin-converting enzyme inhibition in experimental chronic heart failure. Effects on survival, hernodynamics, and cardiovascular remodeling. Circulation 95:1314–1319

    PubMed  CAS  Google Scholar 

  • Murakami K, Mizushige K, Noma T, Tsuji T, Kimura S, Kohno M (2002) Perindopril effect on uncoupling protein and energy metabolism in failing rat hearts. Hypertension 40:251–255

    PubMed  CAS  Google Scholar 

  • Namiuchi S, Kagaya Y, Chida M, Yamane Y, Takahashi C, Fukuchi M, Tezuka F, Watanabe J, Ido T, Shirato K (2000) Regional and temporal profiles ofphorbol12,13-dibutyrate binding after myocardial infarction in rats: effects of captopril treatment. J Cardiovase Pharmacol 35:353–360

    CAS  Google Scholar 

  • Nguyen T, El Salibi E, Rouleau JL (1998a) Postinfarction survival and inducibility of ventricular arrhythmias in the spontaneously hypertensive rat: effects of ramipril and hydralazine. Circulation 98:2074–2080

    PubMed  CAS  Google Scholar 

  • Nguyen T, El Salibi E, Rouleau JL (1998b) Reduced periinfarction mortality as a result of long-term therapy with captopril but not hydralazine or propranolol in spontaneously hypertensive rats. J Cardiovasc Pharmacol 32:884–895

    PubMed  CAS  Google Scholar 

  • Node K, Kitakaze M, Kosaka H, Minamino T, Mori H, Hori M (1998) Role of Ca2+-activated K+ channels in the protective effect of ACE inhibition against ischemic myocardial injury. Hypertension 31:1290–1298

    PubMed  CAS  Google Scholar 

  • Ogiku N, Sumikawa H, Minamide S, Ishida R (1993) Influence of imidapril on abnormal biochemical parameters in salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP). Ipn J Pharmacol 61:69–73

    CAS  Google Scholar 

  • Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V, Atkins RC, Osicka T, Jerums G, Cooper ME (2001) Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108:1853–1863

    PubMed  CAS  Google Scholar 

  • Ondetti MA (1988) Structural relationships of angiotensin converting-enzyme inhibitors to pharmacologic activity. Circulation 77:174–178

    Google Scholar 

  • Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, Kocy O (1971) Angiotensinconverting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry 10:4033–4039

    PubMed  CAS  Google Scholar 

  • Ondetti MA, Rubin B, Cushman DW (1977) Design of specific inhibitors of angiotensinconverting enzyme: new class of orally active antihypertensive agents. Science 196:441–444

    PubMed  CAS  Google Scholar 

  • Onodera T, Okazaki F, Miyazaki H, Minami S, Ito T, Seki S, Taniguchi M, Taniguchi I, Mochizuki S (2002) Perindopril reverses myocyte remodeling in the hypertensive heart. Hypertens Res 25:85–90

    PubMed  CAS  Google Scholar 

  • Onozato ML, Tojo A, Goto A, Fujita T, Wilcox CS (2002) Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int 61:186–194

    PubMed  CAS  Google Scholar 

  • Osicka TM, Yu Y, Panagiotopoulos S, Clavant SP, Kiriazis Z, Pike RN, Pratt LM, Russo LM, Kemp BE, Comper WD, Ierurns G (2000) Prevention of albuminuria by amino guanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C. Diabetes 49:87–93

    PubMed  CAS  Google Scholar 

  • Paull JR, Widdop RE (2001) Persistent cardiovascular effects of chronic renin-angiotensin system inhibition following withdrawal in adult spontaneously hypertensive rats. J Hypertens 19:1393–1402

    PubMed  CAS  Google Scholar 

  • Pereira LM, Mandarim-De-Lacerda CA (2001) The effect of enalapril and verapamil on the left ventricular hypertrophy and the left ventricular cardiomyocyte numerical density in rats submitted to nitric oxide inhibition. Int J Exp Pathol 82:115–122

    PubMed  CAS  Google Scholar 

  • Pieper GM, Siebeneich W (2000) Temocapril, an angiotensin converting enzyme inhibitor, protects against diabetes-induced endothelial dysfunction. Eur J Pharmacol 403:129–132

    PubMed  CAS  Google Scholar 

  • Podesser BK, Schirnhofer J, Bernecker OY, Kroner A, Franz M, Semsroth S, Fellner B, Neumuller J, Hallstrom S, Wolner E (2002) Optimizing ischemia/reperfusion in the failing rat heart-improved myocardial protection with acute ACE inhibition. Circulation 106:1277–1283

    Google Scholar 

  • Pu Q, Touyz RM, Schiffrin EL (2002) Comparison of angiotensin-converting enzyme (ACE), neutral endopeptidase (NEP) and dual ACE/NEP inhibition on blood pressure and resistance arteries of deoxycorticosterone acetate-salt hypertensive rats. J Hypertens 20:899–907

    PubMed  CAS  Google Scholar 

  • Qi XL, Stewart DJ, Gosselin H, Azad A, Picard P, Andries L, Sys SU, Brutsaert DL, Rouleau JL (1999) Improvement of endocardial and vascular endothelial function on myocardial performance by captopril treatment in postinfarct rat hearts. Circulation 100:1338–1345

    PubMed  CAS  Google Scholar 

  • Quaschning T, d’Uscio LV, Shaw S, Lüscher TF (2001) Vasopeptidase inhibition exhibits endothelial protection in salt-induced hypertension. Hypertension 37:1108–1113

    PubMed  CAS  Google Scholar 

  • Reddi AS, Nimmagadda VR, Lefkowitz A, Kuo HR, Bollineni JS (2000) Effect of antihypertensive therapy on renal injury in type 2 diabetic rats with hypertension. Hypertension 36:233–238

    PubMed  CAS  Google Scholar 

  • Remuzzi A, Fassi A, Bertani T, Perico N, Remuzzi G (1999) ACE inhibition induces regression of proteinuria and halts progression of renal damage in a genetic model of progressive nephropathy. Am J Kidney Dis 34:626–632

    PubMed  CAS  Google Scholar 

  • Richer C, Gervais M, Fornes P, Giudicelli JF (1999) Combined selective angiotensin II AT1-receptor blockade and angiotensin I-converting enzyme inh ibition on coronary flow reserve in post ischemic heart failure in rats. J Cardiovasc Pharmacol 34:772–781

    PubMed  CAS  Google Scholar 

  • Rodrigo E, Maeso R, Munoz-Garcia R, Navarro-Cid J, Ruilope LM, Cachofeiro V, Lahera V (1997) Endothelial dysfunction in spontaneously hypertensive rats: consequences of chronic treatment with losartan or captopril. J Hypertens 15:613–618

    PubMed  CAS  Google Scholar 

  • Rosenthal T, Erlich Y, Rosenmann E, Cohen A (1997) Effects of enalapril, losartan, and verapamil on blood pressure and glucose metabolism in the Cohen-Rosenthal diabetic hypertensive rat. Hypertension 29:1260–1264

    PubMed  CAS  Google Scholar 

  • Rouleau JL, Kapuku G, Pelletier S, Gosselin H, Adam A, Gagnon C, Lambert C, Meloche S (2001) Cardioprotective effects of ramipril and losartan in right ventricular pressure overload in the rabbit: importance of kinins and influence on angiotensin II type 1 receptor signaling pathway. Circulation 104:939–944

    PubMed  CAS  Google Scholar 

  • Ruiz-Ortega M, Gomez-Garre D, Liu XH, Blanco J, Largo R, Egido J (1997) Quinapril decreases renal endothelin-l expression and synthesis in a normotensive model of immune-complex nephritis. J Am Soc Nephrol 8:756–768

    PubMed  CAS  Google Scholar 

  • Rumble JR, Gilbert RE, Cox A, Wu L, Cooper ME (1998) Angiotensin converting enzyme inhibition reduces the expression of transforming growth factor-beta 1 and type IV collagen in diabetic vasculopathy. J Hypertens 16:1603–1609

    PubMed  CAS  Google Scholar 

  • Sakaguchi K, Chai SY, Iackson B, Iohnston Cl, Mendelsohn FA (1988) Inhibition of tissue angiotensin converting enzyme. Quantitation by autoradiography. Hypertension 11:230–238

    PubMed  CAS  Google Scholar 

  • Salvetti A (1990) Newer ACEinhibitors. A look at the future. Drugs 40:800–828

    PubMed  CAS  Google Scholar 

  • Sanada S, Kitakaze M, Node K, Takashima S, Ogai A, Asanuma H, Sakata Y, Asakura M, Ogita H, Liao Y, Fukushima T, Yamada J, Minamino T, Kuzuya T, Hori M (2001) Differential subcellular actions of ACEinhibitors and AT(I) receptor antagonists on cardiac remodeling induced by chronic inhibition of NO synthesis in rats. Hypertension 38:404–411

    PubMed  CAS  Google Scholar 

  • Sanbe A, Tanonaka K, Kobayasi R, Takeo S (1995) Effects of long-term therapy with ACE inhibitors, captopril, enalapril and trandolapril, on myocardial energy metabolism in rats with heart failure following myocardial infarction. J Mol Cell Cardiol 27:2209–2222

    PubMed  CAS  Google Scholar 

  • Sandmann S, Yu M, Kaschina E, Blume A, Bouzinova E, Aalkjaer C, Unger T (2001a) Differential effects of angiotensin ATI and ATl receptors on the expression, translation and function of the Na+-H+ exchanger and Na+-HC03-symporter in the rat heart after myocardial infarction. J Am Coli Cardiol 37:2154–2165

    CAS  Google Scholar 

  • Sandmann S, Yu M, Unger T (2001b) Transcriptional and translational regulation of calpain in the rat heart after myocardial infarction-effects of AT(I) and AT(2) receptor antagonists and ACEinhibitor. Br J Pharmacol 132:767–777

    PubMed  CAS  Google Scholar 

  • Schoemaker RG, Debets JJ, Struyker-Boudier HA, Smits JF (1991) Delayed but not immediate captopril therapy improves cardiac function in conscious rats, following myocardial infarction. J Mol Cell Cardiol 23:187–197

    PubMed  CAS  Google Scholar 

  • Schölkens BA, LandgrafW (2002) ACE inhibition and atherogenesis. Can J Physiol Pharmacol 80:354–359

    PubMed  Google Scholar 

  • Sharifi AM, Li JS, Endemann D, Schiffrin EL (1998) Effects of enalapril and amlodipine on small-artery structure and composition, and on endothelial dysfunction in spontaneously hypertensive rats. J Hypertens 16:457–466

    PubMed  CAS  Google Scholar 

  • Shinosaki T, Miyai I, Nomura Y, Kobayashi T, Sunagawa N, Kurihara H (2002) Mechanisms underlying the ameliorative property of lisinopril in progressive mesangioproliferative nephritis. Nephron 91:719–729

    PubMed  CAS  Google Scholar 

  • Shiuchi T, Cui TX, Wu L, Nakagami H, Takeda-Matsubara Y, Iwai M, Horiuchi M (2002) ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO. Hypertension 40:329–334

    PubMed  CAS  Google Scholar 

  • Silvestre JS, Bergaya S, Tamarat R, Duriez M, Boulanger CM, Levy BI (2001) Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway. Circ Res 89:678–683

    PubMed  CAS  Google Scholar 

  • Song JC, White CM (2002) Clinical pharmacokinetics and selective pharmacodynamics of new angiotensin converting enzyme inhibitors: an update. Clin Pharmacokinet 41:207–224

    PubMed  CAS  Google Scholar 

  • Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G, Corvol P (1988) Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 85:9386–9390

    PubMed  CAS  Google Scholar 

  • Soubrier F, Wei L, Hubert C, Clauser E, Alhenc-Gelas F, Corvol P (1993) Molecular biology of the angiotensin I converting enzyme: H. Structure-function. Gene polymorphism and clinical implications. J Hypertens 11:599–604

    PubMed  CAS  Google Scholar 

  • Sousa T, Morato M, Albino-Teixeira A (2002) Angiotensin converting enzyme inhibition prevents trophic and hypertensive effects of an antagonist of adenosine receptors. Eur J Pharmacol 441:99–104

    PubMed  CAS  Google Scholar 

  • Spinale FG, de Gasparo M, Whitebread S, Hebbar L, Clair MJ, Melton DM, Krombach RS, Mukherjee R, Iannini JP, O SJ (1997a) Modulation of the renin-angiotensin pathway through enzyme inhibition and specific receptor blockade in pacing-induced heart failure: 1. Effects on left ventricular performance and neurohormonal systems. Circulation 96:2385–2396

    PubMed  CAS  Google Scholar 

  • Spinale FG, Mukherjee R, Iannini JP, Whitebread S, Hebbar L, Clair MJ, Melton DM, Cox MH, Thomas PB, de Gasparo M (1997b) Modulation of the renin-angiotensin pathway through enzyme inhibition and specific receptor blockade in pacing-induced heart failure: H. Effects on myocyte contractile processes. Circulation 96:2397–2406

    PubMed  CAS  Google Scholar 

  • Stauss HM, Zhu YC, Redlich T, Adamiak D, Mott A, Kregel KC, Unger T (1994) Angiotensin-converting enzyme inhibition in infarct-induced heart failure in rats: bradykinin versus angiotensin H. J Cardiovasc Risk 1:255–262

    CAS  Google Scholar 

  • Stier CT Jr, Benter IF,Ahmad S, Zuo HL, Selig N, Roethel S, Levine S, Itskovitz HD (1989) Enalapril prevents stroke and kidney dysfunction in salt-loaded stroke-prone spontaneously hypertensive rats. Hypertension 13:115–121

    PubMed  CAS  Google Scholar 

  • Sugimoto K, Fujimura A, Takasaki I, Tokita Y, Iwamoto T, Takizawa T, Gotoh E, Shionoiri H, Ishii M (1998) Effects of renin-angiotensin system blockade and dietary salt intake on left ventricular hypertrophy in Dahl salt-sensitive rats. Hypertens Res 21:163–168

    PubMed  CAS  Google Scholar 

  • Suyama K, Muso E, Yashiro M, Sasayama S (2000) Significant suppressive effect of lowdose temocapril, an ACE inhibitor with biliary excretion, on FGS lesions in hypertensive rats. Nephron 86:491–498

    PubMed  CAS  Google Scholar 

  • Sweet CS, Gross DM, Arbegast PT, Gaul SL, Britt PM, Ludden CT, Weitz D, Stone CA (1981) Antihypertensive activity of N-[(S)-I-(ethoxycarbonyl)-3-phenylpropyl]-LAla-L-Pro (MK-421), an orally active converting enzyme inhibitor. J Pharmacol Exp Ther 216:558–566

    PubMed  CAS  Google Scholar 

  • Taal MW, Brenner BM (2000) Renoprotective benefits of RAS inhibition: from ACEl to angiotensin H antagonists. Kidney Int 57:1803–1817

    PubMed  CAS  Google Scholar 

  • Takeda M, Kagaya Y, Takahashi J, Sugie T, Ohta J, Watanabe J, Shirato K, Kondo H, Goto K (2001) Gene expression and in situ localization of diacylglycerol kinase isozymes in normal and infarcted rat hearts: effects of captopril treatment. Circ Res 89:265–272

    PubMed  CAS  Google Scholar 

  • Takeishi Y, Bhagwat A, Ball NA, Kirkpatrick DL, Periasamy M, Walsh RA (1999) Effect of angiotensin-converting enzyme inhibition on protein kinase C and SR proteins in heart failure. Am J Physiol 276:H53–H62

    PubMed  CAS  Google Scholar 

  • Tappia PS, Liu SY, Shatadal S, Takeda N, Dhalla NS, Panagia V (1999) Changes in sarcolemmal PLC isoenzymes in postinfarct congestive heart failure: partial correction by imidapril. Am J Physiol 277:H40–H49

    PubMed  CAS  Google Scholar 

  • Teisman AC, Pinto YM, Buikema H, Flesch M, Böhm M, Paul M, van Gilst WH (1998) Dissociation of blood pressure reduction from end-organ damage in TGR(mREN2)27 transgenic hypertensive rats. J Hypertens 16:1759–1765

    PubMed  CAS  Google Scholar 

  • Thind GS(1990) Angiotensin converting enzyme inhibitors: comparative structure, pharmacokinetics, and pharmacodynamics. Cardiovasc Drugs Ther 4:199–206

    Google Scholar 

  • Todd PA, Heel RC (1986) Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs 31:198–248

    PubMed  CAS  Google Scholar 

  • Toyoshima H, Nasa Y, Kohsaka Y, Isayama Y, Yamaguchi F, Sanbe A, Takeo S (1998) The effect of chronic treatment with trandolapril on cyclic AMP-and cyclic GMP-dependent relaxations in aortic segments of rats with chronic heart failure. Br J Pharmacol 123:344–352

    PubMed  CAS  Google Scholar 

  • Uchida T, Okumura K, Ito T, Kamiya H, Nishimoto Y, Yamada M, Tomida T, Matsui H, Hayakawa T (2002) Quinapril treatment restores the vasodilator action of insulin in fruc tose-hypertensive rats. Clin Exp Pharmacol Physiol 29:381–385

    PubMed  CAS  Google Scholar 

  • Uhleni us N, Tikkanen T, Miettinen A, Holth ofer H, Tornroth T, Eriksso n A, Fyhrquist F, Tikkanen I (1999) Renoprotective effects of captopril in hypertension induced by nitric oxide synthase inhibition in experimental nephritis. Nephron 81:221–229

    Google Scholar 

  • Vlm EH (1983) Enalapril maleate (MK-421), a potent, nonsulfhydryl angiotensin-converting enzyme inhibitor: absorption, disposition, and metabolism in man. Drug Metab Rev 14:99–110

    Google Scholar 

  • Unger T, Gohlke P (1990) Tissue renin-a ngiotensin systems in the heart and vasculature: possible involvement in the cardiovas cular actions of converting enzyme inhibitors. Am J Cardiol 65:31–101

    Google Scholar 

  • Unger T, Gohlke P (1994) Converting enzyme inhibitors in cardiovascular therapy: current status and future potential. Cardiovasc Res 28:146–158

    PubMed  CAS  Google Scholar 

  • Unger T, Schüll B, Rascher W, Lang RE, Ganten D (1982) Selective activation of the con verting enzyme inhibitor MK 421 and comparison of its active diacid form with captopril in different tissues of the rat. Biochem Pharmacol 31:3063–3070

    PubMed  CAS  Google Scholar 

  • Unger T, Badoer E, Ganten D, Lang RE, Rettig R (1988) Brain angiotensin: pathways and pharmacology. Circulation 77:140–154

    Google Scholar 

  • Unger T, Gohlke P, Gruber G (1990) Converting enzyme inhibitors. In: Mulrow DGaPJ (ed) Handbook of experimental pharmacology, vol 93. Springer Verlag, Berlin Heidelberg New York, pp 379–481

    Google Scholar 

  • Unger T, Mattfeldt T, Lamberty V, Bock P, Mall G, Linz W, Scholkens BA, Gohlke P (1992) Effect of early onset angiotensin converting enzyme inhibition on myocardial capillaries. Hypertension 20:478–482

    PubMed  CAS  Google Scholar 

  • Van Gilst WH, de Graeff PA, Schöltens E, de Langen CD, Wesseling H (1987) Potentiation of isosorbide dinitrate-induced coronary dilatation by captopril. J Cardiovasc Pharmacol 9:254–255

    PubMed  Google Scholar 

  • Varin R, Mulder P, Tamion F, Richard V, Henry JP, Lallemand F, Lerebours G, Thuillez C (2000) Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure: rorole of nitric oxide, pro stanoids, oxida nt stress, and bradykinin. Circulation 102:351–356

    PubMed  CAS  Google Scholar 

  • Velasquez MT, Striffler JS, Abraham AA, Michaelis OET, Scalbert E, Thibault N (1997) Perindopril ameliora tes glomerular and renal tubuloint erstitial injury in the SHR/ N-corpulent rat. Hypertension 30:1232–1237

    PubMed  CAS  Google Scholar 

  • Verbeelen DL, De Craemer D, Peeters P, Van den Houte K, Van den Branden C (1998) Enalapril increases antioxidant enzyme activity in renal cortical tissue of five-sixth snephrectomized rats. Nephron 80:214–219

    PubMed  CAS  Google Scholar 

  • Vlassara H, Palace MR (2002) Diabetes and advanced glycation endproducts. J Intern Med 251:87–101

    PubMed  CAS  Google Scholar 

  • Volpert OV, Ward WF, Lingen MW, Chesler L, Solt DB, Johnson MD, Molteni A, Polverini PJ, Bouck NP (1996) Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest 98:671–679

    PubMed  CAS  Google Scholar 

  • Vulpis V, Lograno MD, Seccia TM, Pirrelli A (1998) L-type calcium channels modulate the regression of left ventricular hypert rophy after ace-inhibition in genetic hypertension. Pharmacol Res 38:317–322

    PubMed  CAS  Google Scholar 

  • Wapstra FH, Navis GJ, van Goor H, van den Born J, Berd en JH, de long PE, de Zeeuw D (2001) ACE inhibition preserves heparan sulfate proteoglycans in the glomerular basement membrane of rats with established adriamycin nephropathy. Exp Nephrol 9:21–27

    PubMed  CAS  Google Scholar 

  • Wei GC, Sirois MG, Qu R, Liu P, Rouleau JL (2002) Subacute and chronic effects of quinapril on cardiac cytokine expression, remodeling, and function after myocardial infarction in the rat. J Cardiovasc Pharmacol 39:842–850

    PubMed  CAS  Google Scholar 

  • Westlin W, Mullane K (1988) Does captopril attenuate reperfusion-induced myocardial dysfunction by scavenging free radicals? Circulation 77:130–139

    Google Scholar 

  • Wiemer G, Becker R, Gerhards H, Hock F, Stechl J, Ruger W (1989) Effects of Hoe 065, a compound structurally related to inhibitors of angiotensin converting enzyme, on acetylcholine metabolism in rat brain. Eur J Pharmacol 166:31–39

    PubMed  CAS  Google Scholar 

  • Wiemer G, Scholkens BA, Becker RH, Busse R (1991) Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18:558–563

    PubMed  CAS  Google Scholar 

  • Wiemer G, Scholkens BA, Linz W (1994) Endothelial protection by converting enzyme inhibitors. Cardiovasc Res 28:166–172

    PubMed  CAS  Google Scholar 

  • Winniford MD, Wheelan KR, Kremers MS, Ugolini V, van den Berg E Jr, Niggemann EH, Jansen DE, Hillis LD (1986) Smoking-induced coronary vasoconstriction in patients with atherosclerotic coronary artery disease: evidence for adrenergically mediated alterations in coronary artery tone. Circulation 73:662–667

    PubMed  CAS  Google Scholar 

  • Witte K, Huser L, Knotter B, Heckmann M, Schiffer S, Lemmer B (2001) Normalisation of blood pressure in hypertensive TGR(mREN2)27 rats by amlodipine vs. enalapril: effects on cardiac hypertrophy and signal transduction pathways. Naunyn Schmiedebergs Arch Pharmacol 363:101–109

    PubMed  CAS  Google Scholar 

  • Wolfrum S, Richardt G, Dominiak P, Katus HA, Dendorfer A (2001) Apstatin, a selective inhibitor of aminopeptidase P, reduces myocardial infarct size by a kinin-dependent pathway. Br J Pharmacol 134:370–374

    PubMed  CAS  Google Scholar 

  • Wu LL, Cox A, Roe CJ, Dziadek M, Cooper ME, Gilbert RE (1997) Transforming growth factor beta 1 and renal injury following subtotal nephrectomy in the rat: role of the renin-angiotensin system. Kidney Int 51:1553–1567

    Google Scholar 

  • Wyvratt MJ (1988) Evolution of angiotensin-converting enzyme inhibitors. Clin Physiol Biochem 6:217–229

    PubMed  CAS  Google Scholar 

  • Yamaguchi F, Sanbe A, Takeo S (1998) Effects of long-term treatment with trandolapril on sarcoplasmic reticulum function of cardiac muscle in rats with chronic heart failure following myocardial infarction. Br J Pharmacol 123:326–334

    Google Scholar 

  • Yang CM, Kandaswamy V, Young D, Sen S (1997) Changes in collagen phenotypes during progression and regression of cardiac hypertrophy. Cardiovasc Res 36:236–245

    PubMed  CAS  Google Scholar 

  • Yavuz DG, Ersoz O, Kucukkaya B, Budak Y, Ahiskali R, Ekicioglu G, Emerk K, Akalin S (1999) The effect of losartan and captopril on glomerular basement membrane anionic charge in a diabetic rat model. J Hypertens 17:1217–1223

    PubMed  CAS  Google Scholar 

  • Yoneda H, Toriumi W, Ohmachi Y, Okumura F, Fujimura H, Nishiyama S (1998) Involvement of angiotensin II in development of spontaneous nephrosis in Dahl salt-sensitive rats. Eur J Pharmacol 362:213–219

    PubMed  CAS  Google Scholar 

  • Yoshida K, Xu HL, Kawamura T, Ii L, Kohzuki M (2002) Chronic angiotensin-converting enzyme inhibition and angiotensin II antagonism in rats with chronic renal failure. J Cardiovasc Pharmacol 40:533–542

    PubMed  CAS  Google Scholar 

  • Yoshiyama M, Takeuchi K, Omura T, Kim S, Yamagishi H, Toda I, Teragaki M, Akioka K, Iwao H, Yoshikawa J (1999) Effects of candesartan and cilazapril on rats with myocardial infarction assessed by echocardiography. Hypertension 33:961–968

    PubMed  CAS  Google Scholar 

  • Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:145–153

    PubMed  CAS  Google Scholar 

  • Zaman AK, Fujii S, Sawa H, Goto D, Ishimori N, Watano K, Kaneko T, Furumoto T, Sugawara T, Sakuma I, Kitabatake A, Sobel BE (2001) Angiotensin-converting enzyme inhibition attenuates hypofibrinolysis and reduces cardiac perivascular fibrosis in genetically obese diabetic mice. Circulation 103:3123–3128

    PubMed  CAS  Google Scholar 

  • Zatz R, Dunn BR, Meyer TW, Anders on S, Rennke HG, Brenner BM (1986) Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 77:1925–1930

    Google Scholar 

  • Zhang X, Recchia FA, Bernstein R, Xu X, Nasjletti A, Hintze TH (1999) Kinin-mediated coronary nitric oxide production contributes to the therapeutic action of angiotensin-converting enzyme and neutral endopeptidase inh ibitors and amlodipine in the treatment in heart failure. J Pharmacol Exp Ther 288:742–751

    PubMed  CAS  Google Scholar 

  • Zhu B, Sun Y, Sievers RE, Browne AE, Pulukurthy S, Sudhir K, Lee RJ, Chou TM, Chatterjee K, Parmley WW (2000) Comparative effects of pretreatment with captopril and losartan on cardiovascular protection in a rat model of ischemia-reperfusion. J Am Coll Cardiol 35:787–795

    PubMed  CAS  Google Scholar 

  • Zoja C, Abbate M, Coma D, Capitanio M, Donadelli R, Bruzzi I, Oldroyd S, Benigni A, Remuzzi G (1998a) Pharmacologic control of angiotensin II ameliorates renal disease while reducing renal TGF-beta in experimental mesangi oproliferative glomerulonephritis. Am J Kidney Dis 31:453–463

    PubMed  CAS  Google Scholar 

  • Zoja C, Liu XH, Abbate M, Coma D, Schiffrin EL, Remuzzi G, Benigni A (1998b) Angiotensin II blockade limits tubular protein overreabsorption and the consequent upregulation of endothelin 1 gene in experimental membranous nephropathy. Exp Nephrol 6:121–131

    PubMed  CAS  Google Scholar 

  • Zolk O, Flesch M, Schnabel P, Teisman AC, Pinto YM, van Gilst WH, Paul M, Bohrn M (1998) Effects of quinapril, losartan and hydralazine on cardiac hypertrophy and beta-adrenergic neuroeffector mechanisms in transgenic (mREN2)27 rats. Br J Pharmacol 123: 405–412

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gohlke, P., A., B. (2004). ACE Inhibitors: Pharmacology. In: Angiotensin Vol. II. Handbook of Experimental Pharmacology, vol 163 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18497-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18497-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40641-9

  • Online ISBN: 978-3-642-18497-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics