Skip to main content

Pathophysiology of Cardiac AT1 and AT2 Receptors

  • Chapter
Angiotensin Vol. II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 163 / 2))

  • 190 Accesses

Abstract

Cardiac angiotensin II type-1 (ATI ) and angiotensin II type-2 (AT2) play a crucial role in mediating the myocardial effects of angiotensin II (Ang II). AT1 mediates most of the known Ang II effects, whereas the role of AT2 is still controversial. AT2 is the predominant subtype in the human heart and its activation is proposed to counteract AT1-mediated effects. Expression and regulation of AT1 and AT2 is disease dependent and locally inhomogeneous. ATR regulation occurs at different level s and involves rapid desensitization, receptor in ternalization, attenuation of transcription and post-transcriptional mRNA destabilization. Also, alternative splicing of AT1 and AT2 mRNA may represent a mechanism of ATR regulation. AT1 splice patterns differ between controls and failing hearts, possibly leading to differences in AT1 mRNA translation. AT1 content is reduced in LVH, heart failure and in transplanted human hearts. However, data on AT2 regulation are conflicting. Signal transduction following AT1 stimulation is mediated by activation of PKC, the MAP kinase pathway and immediate early genes. In addition, the JAK-STAT pathway, tyrosine phosphorylation and NF-кB seem to be involved. In contrast, AT2 receptor stimulates protein tyrosine phosphatase activity and leads to inhibition of phosphotyrosine phosphatase 1B in fibroblasts. Regulation of the AT2 receptor in human heart occurs also by elements in intron 1. Factors such as nitric oxide, hypercholesterolemia, statins and estrogens are closely related to the expression of the cardiac ATR. Nitric oxide, statins and estrogen can attenuate Ang II-mediated adverse effects and may in part have protective effects in cardiovascular disease. Cardiac RAS and collagen synthesis are activated in human aortic valve stenosis and regurgitation. However, Ang II seems not to be a necessary factor for LVHin most animal models. Genetic data also suggest that AT2 has a role in human LVH. The +1675 G/A-polymorphism of the X-chromosomal located AT2 receptor modulates LV structure in white, young male subjects with normal or mildly elevated blood pressure and is associated with LVH in these subjects. Further understanding of the disease-specific regulation and function of AT1 and AT2 may lead to a differential pharmacotherapy in LVH and early stages of heart failure

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdellatif MM, Neubauer CF, Lederer WJ et al (1991) Angiotensin-induced desensitization of the phosphoinositide pathway in cardiac cells occurs at the level of the receptor. Circ Res 69:800–809

    PubMed  CAS  Google Scholar 

  • Asano K, Dutcher DL, Port JD et al (1997) Selective downregulation of the angiotensin II ATl-receptor subtype in failing human ventricular myocardium. Circulation 95:1193–1200

    PubMed  CAS  Google Scholar 

  • Bartunek J, Weinberg EO, Tajima M et al (1999) Angiotensin II type 2 receptor blockade amplifies the early signals of cardiac growth response to angiotensin II in hypertrophied hearts. Circulation 99:22–25

    PubMed  CAS  Google Scholar 

  • Bauer P, Regitz-Zagrosek V, Kalisch H et al (1997) Myocardial angiotensin receptor type 1 gene expression in a rat model of cardiac volume overload. Basic Res Cardiol 92:139–146

    Article  PubMed  CAS  Google Scholar 

  • Bedecs K, Elbaz N, Sutran M et al (1997) Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and funct ional activation of SHP-l tyrosine phosphatase. Biochem J 325:449–454

    PubMed  CAS  Google Scholar 

  • Booz GW, Baker KM (1996) Role of type 1 and type 2 angiotensin receptors in angiotensin II-induced cardiomyocyte hypertrophy. Hypertension 28:635–640

    Google Scholar 

  • Borghi C, Prandin MG, Costa FV et al (2000) Use of statins and blood pressure control in treated hypertensive patients with hypercholesterolemia. J Cardiovasc Pharmacol 35:549–555

    Article  PubMed  CAS  Google Scholar 

  • Bottari SP, King IN, Reichlin S et al (1992) The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activit y and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 183:206–211

    Article  PubMed  CAS  Google Scholar 

  • Brink M, Erne P, de Gasparo M et al (1996) Localization of the angiotensin II receptor sub types in the human atrium. J Mol Cell Cardiol 28:1789–1799

    Article  PubMed  CAS  Google Scholar 

  • Brock TA, Rittenhouse SE, Powers CW et al (1985) Phorbol ester and l-oleoyl-2-acetyl-glycerol inhibit angiotensin activation of phospholipase C in cultured vascular smooth muscle cells. J Biol Chem 260:14158–14162

    PubMed  CAS  Google Scholar 

  • Busche S, Gallinat S, Bohle RM et al (2000) Expression of angiotensin AT(1) and AT(2) receptors in adult rat cardiomyocytes after myocardial infarction. A single-cell reverse transcriptase-polymerase chain reaction study. Am J Pathol 157:605–611

    Article  PubMed  CAS  Google Scholar 

  • Curnow K, Pascoe L, Davies E et al (1995) Altern atively spliced human type 1 angiotensin II receptor mRNAs are translated at different efficiencies and encode two receptor isoforms. Mol Endocrinol 9:1250–1262

    Article  PubMed  CAS  Google Scholar 

  • Dechend R et al (2001) Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor. Circulation 104:576–581

    Article  PubMed  CAS  Google Scholar 

  • Delles C, Erdmann J, Jacobi J et al (2000) Lack of association between polymorphisms of angiotensin II receptor genes and response to short-term angiotensin II infusion. J Hypertens 18:1573–1578

    Article  PubMed  CAS  Google Scholar 

  • Dostal DE, Hunt RA, Kule CE et al (1997) Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac effects and signal transduction pathways [in process citation]. J Mol Cell Cardiol 29:2893–2902

    Article  PubMed  CAS  Google Scholar 

  • Elbaz N, Bedecs K, Masson M et al (2000) Functional trans-inactivation of insulin recep tor kinase by growth-inhibitory angiotensin II AT2 receptor [in process citation]. Mol Endocrinol 14:795–804

    Article  PubMed  CAS  Google Scholar 

  • Erdmann J, Guse M, Kallisch H et al (2000) Novel intronic polymorphism (+ 1675G/A) in the human angiotensin II subtype 2 receptor gene. Hum Mutat 15:487

    Article  PubMed  CAS  Google Scholar 

  • Fielitz J, Hein S, Mitrovic V et al (2001) Activation of the cardiac renin-angiotensin system and increased myocardi alcollagen expression in human aortic valve disease. J Am Coll Cardiol 37:1443–1449

    Article  PubMed  CAS  Google Scholar 

  • Fischer JW, Stoll M, Hahn AW et al (2001) Differential regulation of thrombospondin-l and fibronectin by angiotensin II receptor subtypes in cultured endothelial cells. Cardiovasc Res 51:784–791

    Article  PubMed  CAS  Google Scholar 

  • Fischer TA, Sinhg K, O’Hare DS et al (1998) Role of AT1 and AT2 receptors in regulation of MAPKs and MKP-1 by ANG II in adult cardiac myocytes. Am J Physiol 275:H906–H916

    PubMed  CAS  Google Scholar 

  • Glorioso N, Troffa C, Filigheddu F et al (1999) Effect of the HMG-CoA reductase inhibitors on blood pressure in patients with essential hypertension and primary hypercholesterolemia. Hypertension 34:1281–1286

    PubMed  CAS  Google Scholar 

  • Grady EF, Sechi LA, Griffin EA et al (1991) Expression of AT2 receptors in the developing rat fetus. J Clin Invest 88:921–933

    Article  PubMed  CAS  Google Scholar 

  • Grafe M, Auch-Schwelk W, Zakrzewicz A et al (1997) Angiotensin II-induced leukocyte adhesion on human coronary endothelial cells is med iated by E-selectin. Circ Res 81:804–811

    PubMed  CAS  Google Scholar 

  • Haywood GA, Gullestad L, Katsuya T et al (1997) AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 95:1201–1206

    PubMed  CAS  Google Scholar 

  • Hein L, Meinel L, Pratt RE et al (1997) Intracellular trafficking of angiotensin II and its ATI and AT2 receptors: evidence for selective sorting of receptor and ligand. Mol Endocrinol 11:1266-1277

    Google Scholar 

  • Horiuchi M et al (1995) The growth-dependent expression of angiotensin II type 2 receptor is regulated by transcription factors interferon regulatory factor-1 and-2. 270:20225–20230

    Google Scholar 

  • Ichihara S, Senbonmatsu C, Price E Jr et al (2001) Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation 104:346–351

    PubMed  CAS  Google Scholar 

  • Ichiki T, Takeda K, Tokounu T et al (2001) Downregulation of angiotensin II type 1 receptor by hydrophobic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in vascular smooth muscle cells. Arterioscler Thromb Vase Biol 21:1896–1901

    Article  CAS  Google Scholar 

  • Inagami T (1999) Molecular biology and signaling of angiotensin receptors: an overview. J Am Soc Nephrol l0:S2–S7

    Google Scholar 

  • Inagami T, Eguchhi S, Numaguchi K et al (1999) Cross-talk between angiotensin II receptors and the tyrosine kinases and phosphatases. J Am Soc Nephrol l0:S57–S61

    Google Scholar 

  • Kambayashi Y, Bardhan S, Takahashi K et al (1993) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543–24546

    PubMed  CAS  Google Scholar 

  • Katoh M, Egashira K, Usui M et al (1998) Cardiac angiotensin II receptors are upregulated by long-term inhibition of nitric oxide synthesis in rats. Circ Res 83:743–751

    PubMed  CAS  Google Scholar 

  • Kijima K, Matsubara H, Murasawa S et al (1996) Mechanical stretch induces enhanced expression of angiotensin II receptor subtypes in neonatal rat cardiac myocytes. Circ Res 79:887–897

    PubMed  CAS  Google Scholar 

  • Knowle D, Ahmed S, Pulakat L (2000) Identification of an interaction between the angiotens in 11 receptor sub-type AT2 and the ErbB3 receptor, a member of the epidermal growth factor receptor family. Regul Pept 87:73–82

    Article  PubMed  CAS  Google Scholar 

  • Koike G, Winer ES, Horiuchi M et al (1995) Cloning, characterization, and genet ic mapping of the rat type 2 angiotensin II receptor gene. Hypertension 26:998–1002

    PubMed  CAS  Google Scholar 

  • Krishnamurthi K, Verbalis JG, Zheng W et al (1999) Estrogen regulates angiotensin AT1 receptor expression via cytosolic proteins that bind to the 5′ leader sequence of the receptor mRNA. Endocrinology 140:5435–5438

    Google Scholar 

  • Kudoh S, Komuro I, Misuno T et al (1997) Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 80:139–146

    PubMed  CAS  Google Scholar 

  • Kupfahl C, Pink D, Friedrich K et al (2000) Angiotensin II directly increases transforming growth factor betal and osteopontin and indirectly affects collagen mRNA expression in the human heart. Cardiovasc Res 46:463–475

    Article  PubMed  CAS  Google Scholar 

  • Lefroy DC, Wharton J, Crake T et al (1996) Regional changes in angiotensin II receptor density after experimental myocardial infarction. J Mol Cell Cardiol 28:429–440

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Avallet O, Berthelon MC et al (1999) Transcriptional and translational regulation of angiotensin II type 2 receptor by angiotensin II and growth factors. Endocrinology 140:4988–4994

    Article  PubMed  CAS  Google Scholar 

  • Lopez JJ, Laurel BH, Ingelfinger JR et al (1994) Distribution and function of cardiac angiotensin AT1- and AT2-receptor subtypes in hypertrophied rat hearts. Am J Physiol 267:H844–H852

    PubMed  CAS  Google Scholar 

  • Lorell BH (1999) Role of angiotensin AT1 and AT2 receptors in cardiac hypertrophy and disease. Am J Cardiol 83:48H–52H

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Somura F, Obata K et al (2002) AT1 receptor blockade reduces cardiac calcineurin activity in hypertensive rats. Hypertension 40:168–174

    Article  PubMed  CAS  Google Scholar 

  • Nahmias C, Cazaubom SM, Briend-Sutren MM et al (1995) Angiotensin II AT2 receptors are functionally coupled to protein tyrosine dephosphorylation in N1E-II5 neuroblastoma cells. Biochem J 306:87–92

    PubMed  CAS  Google Scholar 

  • Nickenig G, Murphy TJ (1994) Down-regulation by growth factors of vascular smooth muscle angiotensin receptor gene expression. 46:653–659

    Google Scholar 

  • Nickenig G, Baumer AT, Grohe C et al (1998) Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation 97:2197–2201

    PubMed  CAS  Google Scholar 

  • Nickenig G et al (1999) Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation 100:2131–2134

    PubMed  CAS  Google Scholar 

  • Nickenig G, Strehlow K, Wassmann S et al (2000) Differential effects of estrogen and progesterone on AT(1) receptor gene expression in vascular smooth muscle cells. Circulation 102:1828–1833

    PubMed  CAS  Google Scholar 

  • Nozawa Y, Miyake H, Haruno A et al (1996) Down-regulation of angiotensin II receptors in hypertrophied human myocardium. Clin Exp Pharmacol Physiol 23:514–518

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo N, Matsubara H, Nozawa Y et al (1997) Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation 96:3954–3962

    PubMed  CAS  Google Scholar 

  • Pueyo ME, Gonzalez W, Nicoletti A et al (2000) Angiotensin II stimulates endothelial vascular cell adhesion molecule-l via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vase Biol 20:645–651

    CAS  Google Scholar 

  • Regitz-Zagrosek V, Friedel N, Heymann A Z (1995) Regulation, chamber localization, and subtype distribution of angiotensin II receptors in human hearts. Circulation 91:1461–1471

    PubMed  CAS  Google Scholar 

  • Regitz-Zagrosek V, Fielitz J, Hummel M et al (1996a) Decreased expression of ventricular angiotensin receptor type 1 mRNA after human heart transplantation. J Mol Med 74:777–782

    Article  CAS  Google Scholar 

  • Regitz-Zagrosek V, Neuss M, Warnecke C et al (1996b) Subtype 2 and atypical angiotensin receptors in the human heart. Basic Res Cardiol 91 [Suppl 2]:73–77

    Article  CAS  Google Scholar 

  • Regitz-Zagrosek V, Fielitz J, Dreyesse R et al (1997) Angiotensin receptor type 1 mRNA in human right ventricular endomyocardial biopsies: downregulation in heart failure. Cardiovasc Res 35:99–105

    Article  PubMed  CAS  Google Scholar 

  • Regitz-Zagrosek V, Fielitz J, Fleck E (1998) Myocardial angiotensin receptors in human hearts. Basic Res Cardiol 93 [Suppl 2]:37–42

    Article  PubMed  CAS  Google Scholar 

  • Rogg H, de Gasparo M, Graedel E et al (1996) Angiotensin II-receptor subtypes in human atria and evidence for alterations in patients with cardiac dysfunction [see comments]. Eur Heart J 17:1112–1120

    PubMed  CAS  Google Scholar 

  • Ruiz-Ortega M, Lorenzo O, Ruperez M et al (2000) Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms. Circ Res 86:1266–1272

    PubMed  CAS  Google Scholar 

  • Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423

    PubMed  CAS  Google Scholar 

  • Sandmann S, Yu M, Kaschina E et al (2001) Differential effects of angiotensin AT1 and AT2 receptors on the expression, translation and function of the Na+-H+ exchanger and Na+-HC03-symporter in the rat heart after myocardial infarction. J Am Coli Cardiol 37:2154–2165

    Article  CAS  Google Scholar 

  • Schieffer B, Bernstein KE, Marrero MB (1996) The role of tyrosine phosphorylation in angiotensin II mediated intracellular signaling and cell growth. J Mol Med 74:85–91

    Article  PubMed  CAS  Google Scholar 

  • Schmieder RE, Erdmann J, Delles C et al (2001) Effect of the angiotensin II type 2-receptor gene (+ 1675 G/A) on left ventricular structure in humans. J Am Coli Cardiol 37:175–182

    Article  CAS  Google Scholar 

  • Schunkert H, Sadoshima J, Corneilus T et al (1995) Angiotensin II-induced growth responses in isolated adult rat hearts. Evidence for load-independent induction of cardiac protein synthesis by angiotensin II. 76:489–497

    Google Scholar 

  • Sechi LA, Griffin EA, Grady EF et al (1992) Characterization of angiotensin II receptor sub types in rat heart. 71:1482-1489

    Google Scholar 

  • Sechi LA, Sechi G, Di Carli S et al (1993) [Angiotensin receptors in the rat myocard ium during pre-and postnatal development]. Cardiologica 38:471–476

    CAS  Google Scholar 

  • Stoll M, Hahn AW, Ionas U et al (2002) Identification of a zinc finger homeodomain enhancer prote in after AT(2) receptor stimulation by differential mRNA display. Arterioscler Thromb Vase Biol 22:231–237

    Article  CAS  Google Scholar 

  • Sun Y et al (1997) Fibrous tissue and angiotensin II. J Mol Cell Cardiol 29:2001–2012

    Article  PubMed  CAS  Google Scholar 

  • Tambascia RC, Fonesca PM, Corat PD et al (2001) Expression and distribution of NOSl and NOS3 in the myocardium of angiotensin II-infused rats. Hypertension 37:1423–1428

    PubMed  CAS  Google Scholar 

  • Tamura K et al (2000) Expression of renin-angiotensin system and extracellular matrix genes in cardiovascular cells and its regulation through ATI receptor. Mol Cell Bioehem 212:203–209

    Article  CAS  Google Scholar 

  • Thienelt CD, Weinberg EO, Bartunek J et al (1997) Load-induced growth responses in isolated adult rat hearts. Role of the ATI receptor. J Am Coli Cardiol 95:2677–2683

    CAS  Google Scholar 

  • Timmermans PB, Chiu AT, Herblin WF et al (1992) Angioten sin II receptor subtypes. Am J Hypertens 5:406–410

    PubMed  CAS  Google Scholar 

  • Tsutsumi Y, Matsubara H, Ohkubo N et al (1998) Angiotensin II type 2 receptor is upregulated in human heart with interstitial fibrosis, and cardiac fibroblasts are the major cell type for its expression. Circ Res 83:1035–1046

    PubMed  CAS  Google Scholar 

  • Wang X, Nickenig G, Murphy TJ (1997) The vascular smooth muscle type I angiotensin II receptor mRNA is destabilized by cyclic AMP-elevating agents. Mol Pharmacol 52:781–787

    PubMed  CAS  Google Scholar 

  • Warnecke C, Surder D, Curth R et al (1999a) Analysis and functional characterization of alternatively spliced angiot ensin II type 1 and 2 receptor transcripts in the human heart. J Mol Med 77:718–727

    Article  CAS  Google Scholar 

  • Warnecke C, Willich T, Holzmeister J et al (1999b) Efficient transcription of the human angiotensin II type 2 receptor gene requires intronic sequence elements. Biochem J 340:17–24

    Article  CAS  Google Scholar 

  • Warnecke C, Kaup D, Marienfeld U et al (2001) Adenovirus-mediated overexpression and stimulation of the human angiotensin II type 2 receptor in porcine cardiac fibroblasts does not modulate proliferation, collagen I mRNA expression and ERKl/ERK2 activity, but inhibits protein tyrosine phosphatases. J Mol Med 79:510–521

    Article  PubMed  CAS  Google Scholar 

  • Weinberg EO, Lee MA, Weigner M et al (1997) Angiotensin ATI receptor inhibition. Effects on hypertrophic remodeling and ACEexpression in rats with pressure-overload hypertrophy due to ascending aortic stenosis. Circulation 95:1592–1600

    PubMed  CAS  Google Scholar 

  • Wharton J, Morgan K, Rutherford RA et al (1998) Differential distribution of angiotensin AT2 receptors in the normal and failing human heart. J Pharmacol Exp Ther 284:323–336

    PubMed  CAS  Google Scholar 

  • Xia QG, Chung O, Spitznagel H et al (2001) Significance of timing of angiotensin AT1 receptor blockade in rats with myocardial infarction-induced heart failure. Cardiovasc Res 49:110–117

    Article  PubMed  CAS  Google Scholar 

  • Zhang X et al (2000) Evaluation of three polymorphisms in the promoter region of the angiotensin II type I receptor gene. J Hypertens 18:267–272

    Article  PubMed  CAS  Google Scholar 

  • Zhu YZ et al (2000) Effects oflosartan on haemodynamic parameters and angiotensin receptor mRNA levels in rat heart after myocardial infarction. J Renin Angiotensin Aldosterone Syst 1:257–262

    Article  PubMed  CAS  Google Scholar 

  • Zisman LS, Asano K, Dutcher DL et al (1998) Differential regulation of cardiac angiotensin converting enzyme binding sites and ATI receptor density in the failing human heart. Circulation 98:1735–1741

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fielitz, J., Regitz-Zagrosek, V. (2004). Pathophysiology of Cardiac AT1 and AT2 Receptors. In: Angiotensin Vol. II. Handbook of Experimental Pharmacology, vol 163 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18497-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18497-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40641-9

  • Online ISBN: 978-3-642-18497-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics