Skip to main content

AT1 Receptor Interactions

  • Chapter
Angiotensin Vol. I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 163 / 1))

  • 183 Accesses

Abstract

Angiotensin II and antagonist-AT1 receptor interactions have traditionally been studied on isolated tissues in organ bath experiments. Cells that express endogenous or transfected AT1 receptors are now also increasingly used to this end. Angiotensin II and angiotensin III interact with the AT1 receptor in a similar fashion. Other naturally occurring fragments like angiotensin IV or angiotensin-(1–7) display only low affinity for the receptor and the latter even acts as an antagonist. Combination of such structure-activity relationship and receptor mutation studies led to a more complete picture of the molecular events that take place during receptor activation. At least two steps take place: a pre-activation step, in which constraining intramolecular interactions within the receptor are broken by Arg2 of angiotensin II, and a subsequent activation step in which the C-terminal side of the hormone plays an essential role. The outcome is a conformational change in the receptor that promotes its interaction with G proteins. Interaction with nonpeptide, biphenyltetrazole antagonists is also a multi-step process, and a “two-state, two-step” model is proposed in which the initial attraction to the receptor is fairly similar for all antagonists and in which a more stable, tight binding antagonist-receptor complex can be formed subsequently. This explains the often-mentioned distinction between “surmountable” and “insurmountable” antagonists in, e.g. vascular smooth muscle contraction experiments. This tight biding state is unrelated to receptor internalisation, but mutation studies reveal the implication of Lys199. These recent observations comply with the increasing awareness that AT1 receptors and other G protein-linked receptors may adopt a number of agonist- and antagonist-bound conformations and/or states, each with its own characteristic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACE:

Angiotensin-Converting enzyme

Ang:

Angiotensin

CHO-hAT1 cells:

Chinese hamster ovary cells expressing the human AT1 receptor

GPCR:

G protein-coupled receptor

L:

Ligand (antagonist)

N111G mutant:

AT1 receptor mutant in which Asn111 is substituted by Gly

R, R′, R*, RI :

Receptor in stable inactive-, preactivated-, fully active and tight antagonist-binding states, respectively

TM:

Transmembrane-spanning helix

References

  • Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T et al (2001) Evidence that the Angiotensin IV (AT4) receptor is the enzyme insulin-regulated aminopepti-dase. J Biol Chem 276:48623–48626

    Article  PubMed  CAS  Google Scholar 

  • Bouley R, Pérodin J, Plante H, Rihakova L, Bernier SG, Maletínskâ L, Guillemette G, Escher E (1998) N-and C-terminal structure-activity study of angiotensin II on the angiotensin AT2 receptor. Eur J Pharmacol 343:23–31

    Article  Google Scholar 

  • Cazaubon C, Gougat J, Bousquet F, Guiraudou P, Gayraud R, Lacour C et al (1993) Pharmacological characterization of SR 47436, a new non-peptide AT1 subtype angiotensin II receptor antagonist. J Pharmacol Exp Ther 265:826–834

    PubMed  CAS  Google Scholar 

  • Clark RB, Knoll BJ, Barber R (1999) Partial agonists and G protein-coupled receptor de-sensitization. Trends Pharmacol Sci 20:279–286

    Article  PubMed  CAS  Google Scholar 

  • Cohen GB, Oprian DD, Robinson PR (1992) Mechanism of activation and inactivation of opsin: role of Glull3 and Lys296. Biochemistry 3:12592–12601

    Article  Google Scholar 

  • Conchon S, Monnot C, Teutsch B, Corvol P, Clauser E (1994) Internalization of the rat AT1a and AT1b receptors: pharmacological and functional requirements. FEBS Lett 349:365–370

    Article  PubMed  CAS  Google Scholar 

  • Criscione L, de Gasparo M, Bühlmayer P, Whitebread S, Ramjoué HP, Wood J (1993) Pharmacological profile of valsartan: a potent, orally active, nonpeptide antagonist of the angiotensin II AT1 receptor subtype. Br J Pharmacol 110:761–771

    PubMed  CAS  Google Scholar 

  • Crozat A, Penhoat A, Saez JM (1986) Processing of angiotensin II (A-II) and (sar1,Ala8) A-II by cultured bovine adrenocortical cells. Endocrinol 118:2312–2318

    Article  CAS  Google Scholar 

  • De Arriba AF, Gomez-Casajus LA, Cavalcanti F, Almansa C, Garcia-Rafanel J, Forn J (1996) In vitro pharmacological characterization of a new selective angiotensin AT1 receptor antagonist, UR-7280. Eur J Pharmacol 318:341–347

    Article  PubMed  Google Scholar 

  • de Chaffoy de Courcelles D, Leysen JE, Roevens P, Van Belle H (1986) The serotonin-S2 receptor: a receptor, transducer coupling model to explain insurmountable antagonist effects. Drug Dev Res 8:173–178

    Article  Google Scholar 

  • de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  • De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific properties of the adenylate cyclase-coupled β adrenergic receptor. J Biol Chem 255:7108–7117

    PubMed  Google Scholar 

  • Duncia JV, Chiu AT, Carini DJ, Gregory GB, Johnson AL, Price WA et al (1990) The discovery of potent non-peptide angiotensin II receptors antagonists: a new class of potent antihypertensives. J Med Chem 33:1312–1329

    Article  PubMed  CAS  Google Scholar 

  • Ferrario CM, Iyer SN (1998) Angiotensin-(1–7): a bioactive fragment of the renin-angiotensin system. Regul Pept 78:13–18

    Article  PubMed  CAS  Google Scholar 

  • Fierens FLP, Vanderheyden PML, De Backer J-P, Vauquelin G (1999a) Insurmountable angiotensin II AT1 receptor antagonists: the role of tight antagonist binding. Eur J Pharmacol 372:199–206

    Article  PubMed  CAS  Google Scholar 

  • Fierens FLP, Vanderheyden PML, De Backer J-P, Vauquelin G (1999b) Binding of the antagonist [3H]candesartan to angiotensin II AT1 receptor-transfected Chinese hamster ovary cells. Eur J Pharmacol 367:413–422

    Article  PubMed  CAS  Google Scholar 

  • Fierens FLP, Vanderheyden PML, Gaborik Z, Le Minh T, DeBacker J-P, Hunyady L et al (2000) Lys199 Mutation of the human angiotensin II AT1 receptor differently affects the binding of surmountable and insurmountable non-peptide antagonists. J Renin Angiotensin Aldosterone System 1:283–288

    Article  CAS  Google Scholar 

  • Fierens FLP, Vanderheyden PML, De Backer J-P, Thekkumkara TJ, Vauquelin G (2001) Tight binding of the angiotensin AT1 receptor antagonist [3H]candesartan is independent of receptor internalization. Biochem Pharmacol 61:1227–1235

    Article  Google Scholar 

  • Fierens F, Vanderheyden PML, Roggeman C, Vande Gucht P, De Backer J-P, Vauquelin G (2002) Distinct binding properties of the AT1 receptor antagonist [3H]candesartan to intact cells and membrane preparations. Biochem Pharmacol 63:1273–1279

    Article  PubMed  CAS  Google Scholar 

  • Groblewski T, Maigret B, Larguier R, Lombard C, Bonnafous JC, Marie J (1997) Mutation of Asn111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation. J Biol Chem 272:1822–1826

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Kiyama R, Nakajima S, Kawabata T, Kawakami M, Ohtani K et al (1995) Kinetic studies on the interaction of nonlabeled antagonists with the angiotensin II receptor. Eur J Pharmacol 289:267–273

    Article  PubMed  CAS  Google Scholar 

  • Harding JW, Felix D (1987) Angiotensin-sensitive neurons in the rat paraventricular nucleus: relative potencies of angiotensin II and angiotensin III. Brain Res 410:130–134

    Article  PubMed  CAS  Google Scholar 

  • Hein L, Meinel L, Pratt RE, Dzau VJ, Kobilka BK (1997) Intracellular trafficking of angiotensin II and its AT1 and AT2 receptors: evidence for selective sorting of receptor and ligand. Mol Endocrinol 11:1266–1277

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg NK (2001) Potential of the angiotensin II receptor 1 blocker eprosartan in the management of patients with hypertension or heart failure. Curr Hypertens Rep 3:S25–S28

    Article  PubMed  Google Scholar 

  • Hunyady L, Balla T, Catt KJ (1996) The ligand binding site of the angiotensin AT1 receptor. Trends Pharmacol Sci 17:135–140

    Article  PubMed  CAS  Google Scholar 

  • Hunyady L, Gáborik Z, Vauquelin G, Catt KJ, Clark AJL (2001) Structural requirements for signaling and regulation of AT1 angiotensin receptors. J Renin Angiotensin Aldosterone Syst 2:S16–S23

    Article  CAS  Google Scholar 

  • Ji H, Leung M, Zhang Y, Catt KJ, Sandberg K (1994) Differential structural requirements for specific binding of nonpeptide and peptide antagonists to the AT1 angiotensin receptor. Identification of amino acid residues that determine binding of the antihypertensive drug losartan. J Biol Chem 269:16533–16536

    PubMed  CAS  Google Scholar 

  • Kakar SS, Sellers JC, Devor DC, Musgrove LC, Neill JD (1992) Angiotensin II type-1 receptor subtype cDNAs: differential tissue expression and hormonal regulation. Biochem Biophys Res Commun 183:1090–1096

    Article  PubMed  CAS  Google Scholar 

  • Kenakin TP (1987) Analysis of dose-response data. In: Kenakin TP (ed) Pharmacologic analysis of drug receptor interaction. Raven Press, New York, pp 129–162

    Google Scholar 

  • Kramar EA, Armstrong DL, Ikeda S, Wayner MJ, Harding JW, Wright JW (2001) The effects of angiotensin IV analogs on long-term potentiation within the CA1 region of the hippocampus in vitro. Brain Res 897:114–21

    Article  PubMed  CAS  Google Scholar 

  • Le MT, Vanderheyden PML, Szaszák M, Hunyady L, Vauquelin G (2002) Distinct roles of the N-and C-terminal amino acid residues of angiotensin II in human AT1 receptor activation. J Biol Chem 277:23107–23110

    Article  PubMed  CAS  Google Scholar 

  • Le MT, Vanderheyden PML, Szaszák M, Hunyady L, Kersemans V, Vauquelin G (2003) Peptide and nonpeptide antagonist interaction with constitutively active human AT1 receptors. Biochem Pharmacol 65:1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Leurs R, Rodriguez Pena MS, Bakker RA, Alewijnse AE, Timmerman H (2000) Constitutive activity of G protein coupled receptors and drug action. Pharm Acta Helv 74:327–331

    PubMed  CAS  Google Scholar 

  • Liu YJ, Shankley NP, Welsh NJ, Black JW (1992) Evidence that the apparent complexity of receptor antagonism by angiotensin II analogues is due to a reversible and synoptic action. Br J Pharmacol 106:233–241

    PubMed  CAS  Google Scholar 

  • Lucas M, Homburger V, Dolphin A, Bockaert J (1979) In vitro and in vivo kinetic analysis of the interaction of a norbornyl derivative of propranolol with beta-adrenergic receptors of brain and C6 glioma cells; an irreversible or slowly reversible ligand. Mol Pharmacol 15:588–597

    PubMed  CAS  Google Scholar 

  • Luque M, Martin P, Martell N, Fernandez C, Brosnihan KB, Ferrario CM (1996) Effects of Captopril related to increased levels of prostacyclin and angiotensin-(1–7) in essential hypertension. J Hypertens 14:799–805

    Article  PubMed  CAS  Google Scholar 

  • Mahon JM, Carr RD, Nicol AK, Henderson IW (1994) Angiotensin(1–7) is an antagonist at the type 1 angiotensin II receptor. J Hypertens 12:1377–1381

    Article  PubMed  CAS  Google Scholar 

  • Miura S, Feng YH, Husain A, Karnik SS (1999) Role of aromaticity of agonist switches of angiotensin II in the activation of the AT1 receptor. J Biol Chem 274:7103–7110

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki S, Sato T, Furata K, Hase K, Ohkura Y, Fukai C et al (1995) Pharmacological properties of KT3-671, a novel nonpeptide angiotensin II receptor antagonist. J Car-diovasc Pharmacol 25:22–29

    Article  CAS  Google Scholar 

  • Monnot C, Bihoreau C, Conchon S, Curnow KM, Corvol P, Clauser E (1996) Polar residues in the transmembrane domains of the type 1 angiotensin II receptor are required for binding and coupling. Reconstitution of the binding site by co-expression of two deficient mutants. J Biol Chem 271:1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Mustafa T, Hyung Lee J, Yeen Chai S, Albiston AI, McDowall SG, Mendelsohn FAO (2001) Bioactive angiotensin peptides: focus on angiotensin IV. J Renin Angiotensin Aldosterone System 2:205–210

    Article  CAS  Google Scholar 

  • Noda M, Shibouta Y, Inada Y, Ojima M, Wada T, Sanada T et al (1993) Inhibition of rabbit aoritc angiotensin II (AII) receptor by CV-11974, a new neuropeptide All antagonist. Biochem Pharmacol 46:311–318

    Article  PubMed  CAS  Google Scholar 

  • Noda K, Saad Y, Karnik SS (1995) Interaction of Phe8 of angiotensin II with Lys199 and His256 of AT1 receptor in agonist activation. J Biol Chem 270:28511–28514

    Article  PubMed  CAS  Google Scholar 

  • Noda K, Feng YH, Liu XP, Saad Y, Husain A, Karnik SS (1996) The active state of the AT1 angiotensin receptor is generated by angiotensin II induction. Biochemistry 35:16435–16442

    Article  PubMed  CAS  Google Scholar 

  • Onaran HO, Gurdal H (1999) Ligand efficacy and affinity in an interacting 7TM receptor model. Trends Pharmacol Sci 20:274–278

    Article  CAS  Google Scholar 

  • Pals DT, Denning GS Jr, Keenan RE (1979) Historical development of saralasin. Kidney Int 15: S7–S10

    Article  Google Scholar 

  • Pendleton RG, Gessner G, Homer E (1989a) Studies defining minimal receptor domains for angiotensin II. J Pharmacol Exp Ther 250:31–36

    PubMed  CAS  Google Scholar 

  • Pendleton RG, Gessner G, Horner E (1989b) Studies on inhibition of angiotensin II receptors in rabbit adrenal and aorta. J Pharmacol Exp Ther 248:637–643

    PubMed  CAS  Google Scholar 

  • Potts PD, Horiuchi J, Coleman MJ, Dampney RA (2000) The cardiovascular effects of an-giotensin-(l-7) in the rostral and caudal ventrolateral medulla of the rabbit. Brain Res 877:58–64

    Article  PubMed  CAS  Google Scholar 

  • Reaux A, Fournie-Zaluski M-C, Llorens-Cortes C (2001) Angiotensin III: a central regulator of vasopressin release and blood pressure. Trends Endocrinol Metabol 12:157–162

    Article  CAS  Google Scholar 

  • Robertson MJ, Barnes JC, Drew GM, Clark KL, Marshall FH, Michel A et al (1992) Pharmacological profile of GR 117289 in vitro: a novel, potent and specific non-peptide angiotensin AT1 receptor antagonist. Br J Pharmacol 107:1173–1180

    PubMed  CAS  Google Scholar 

  • Robertson MJ, Dougall IG, Harper D, Mckechnie KCW, Leff P (1994) Agonist-antagonist interactions at angiotensin receptors: application of a two-state receptor model. Trends Pharmacol Sci 15:364–369

    Article  PubMed  CAS  Google Scholar 

  • Robertson, MJ (1998) Angiotensin antagonists. In: Leff P (ed) Receptor-based drug design. Marcel Dekker, New York, pp 207–223

    Google Scholar 

  • Schambye HT, Hjorth SA, Bergsma DJ, Sathe G, Schwartz TW. (1994) Differentiation between binding sites for angiotensin II and nonpeptide antagonists on the angiotensin II type 1 receptors. Proc Natl Acad Sci USA 91:7046–7050

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Okuhira M, Mikoshiba I, Hashimoto K (1997) In vitro pharmacological properties of KRH-594, a novel angiotensin II type 1 receptor antagonist. Biol Pharmacol Bull 20:850–855

    Article  CAS  Google Scholar 

  • Thomas WG, Qian H, Chang CS, Karnik S (2000) Agonist-induced phosphorylation of the angiotensin II (AT(1A)) receptor requires generation of a confomation that is distinct from the inositol phosphate-signaling state. J Biol Chem 275:2893–2900

    Article  PubMed  CAS  Google Scholar 

  • Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ et al (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251

    PubMed  CAS  Google Scholar 

  • Timmermans PBMWM (1999a) Angiotensin II receptor antagonists. An emerging new class of cardiovascular therapeutics. Hypertens Res 22:147–153

    Article  PubMed  CAS  Google Scholar 

  • Timmermans PBMWM (1999b) Pharmacological properties of angiotensin II receptor antagonists. Can J Cardiol 15:26F–28F

    PubMed  Google Scholar 

  • Unger T (1999) Significance of angiotensin type 1 receptor blockade: why are angiotensin II receptor blockers different? Am J Cardiol 84:9S–15S

    Article  PubMed  CAS  Google Scholar 

  • Vanderheyden P, Fierens FLP, De Backer J-P, Frayman N, Vauquelin G (1999) Distinction between surmountable and insurmountable selective AT1 receptor antagonists by use of CHO-K1 cells expressing human angiotensin II AT1 receptors. Brit J Pharmacol 126:1057–1065

    Article  CAS  Google Scholar 

  • Vanderheyden PML, Verheijen I, Fierens FLP, De Backer J-P, Vauquelin G (2000a) Inhibition of angiotensin II induced inositol phosphate production in CHO cells expressing human AT1 receptors by triacid nonpeptide antagonists. Pharm Res 17:1482–1488

    Article  PubMed  CAS  Google Scholar 

  • Vanderheyden PML, Fierens FLP, De Backer J-P, Vauquelin G (2000b) Reversible and syn-topic interaction between angiotensin II AT1 receptor antagonists and human AT1 receptors expressed in CHO-K1 cells. Biochem Pharmacol 59:927–935

    Article  PubMed  CAS  Google Scholar 

  • Vanderheyden PML, Fierens FLP, Verheijen I, De Backer J-P, Vauquelin G (2000c) Binding characteristics of [3H]-irbesartan to human recombinant angiotensin II type 1 receptors. J Renin Angiotensin Aldosterone Syst 1:159–165

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin G, Fierens FLP, Vanderheyden PML (2000) Mechanisms of Angiotensin II Antagonism. Competitive vs. Non-Competitive Inhibition. In: Epstein M, Brunner HR (eds) Angiotensin II Receptor Antagonists. Harley and Belfus, Philadelphia, pp 105–118

    Google Scholar 

  • Vauquelin G, Fierens FLP, Verheijen I, Vanderheyden PML (2001a) Distinctions between non-peptide angiotensin II AT1 receptor antagonists. J Renin Angiotensin Aldosterone Syst 2:S24–S31

    Article  CAS  Google Scholar 

  • Vauquelin G, Morsing P, Fierens FLP, De Backer J-P, Vanderheyden PML (2001b) A two-state receptor model for the interaction between angiotensin II AT1 receptors and their non-peptide antagonists. Biochem Pharmacol 61:277–284

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin G, Fierens FLP, Gáborik Z, Le Minh T, De Backer J-P, Hunyady L, Vanderheyden PML (2001c) Role of basic amino acids of the human angiotensin type 1 receptor in the binding of the non-peptide antagonist candesartan. J Renin Angiotensin Aldosterone Syst 2:S32–S36

    Article  CAS  Google Scholar 

  • Vauquelin G, Van Liefde I, Vanderheyden PML (2003) Models and methods for studying insurmountable antagonism. Trends Pharmacol Res 23:514–518

    Article  Google Scholar 

  • Verheijen I, Fierens FLP, De Backer J-P, Vauquelin G, Vanderheyden PML (2000) Interaction between the partially insurmountable antagonist valsartan and human recombinant angiotensin II type 1 receptors. Fund Clin Pharmacol 14:577–585

    Article  CAS  Google Scholar 

  • Wienen W, Hauel N, Van Meel JC, Narr B, Ries U, Entzeroth M (1993) Pharmacological characterization of the novel nonpeptide angiotensin II receptor antagonist, BIBR 277. Br J Pharmacol 110:245–252

    PubMed  CAS  Google Scholar 

  • Wong PC, Timmermans PB (1991) Nonpeptide angiotensin II receptor antagonists: insurmountable angiotensin II antagonism of EXP3892 is reversed by the surmountable antagonist DuP 753. J Pharmacol Exp Ther 258:49–57

    PubMed  CAS  Google Scholar 

  • Wong PC, Price WA, Chiu AT, Thoolen MJMC, Duncia JV, Carini DJ et al (1990) Non-peptide angiotensin II receptor antagonists. IX. Pharmacology of EXP3174: an active metabolite of DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther 255:211–217

    PubMed  CAS  Google Scholar 

  • Wright JW, Stubley L, Pedersen ES, Kramar EA, Hanesworth JM, Harding JW (1999) Contributions to the brain angiotensin IV-AT4 receptor subtype system to spatial learning. J Neurosci 19:3952–3961

    PubMed  CAS  Google Scholar 

  • Yamada K, Iyer SN, Chappell MC, Ganten D, Ferrario CM (1998) Converting enzyme determines plasma clearance of angiotensin-(1–7). Hypertension 32:496–502

    PubMed  CAS  Google Scholar 

  • Yamano Y, Ohyama K, Kikyo M, Sano T, Nakagomi Y, Inoue Y et al (1995) Mutagenesis and the molecular modeling of the rat angiotensin II receptor (AT1). J Biol Chem 270:14024–14030

    Article  PubMed  CAS  Google Scholar 

  • Zhang JC, Van Meel A, Pfaffendorf M, Van Zwieten P (1993) Different types of angiotensin II receptor antagonism induced by BIBS 222 in the rat portal vein and rabbit aorta; the Influence of receptor reserve. J Pharmacol Exp Ther 269:509–514

    Google Scholar 

  • Zini S, Fournie-Zaluski M-C, Chauvel E, Roques BP, Corvol P, Lorens-Cortes C (1996) Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: Predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci USA 93: 11968–11973

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vauquelin, G., Vanderheyden, P. (2004). AT1 Receptor Interactions. In: Unger, T., Schölkens, B.A. (eds) Angiotensin Vol. I. Handbook of Experimental Pharmacology, vol 163 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18495-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18495-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40640-2

  • Online ISBN: 978-3-642-18495-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics