Robust Stability of Teleoperation Schemes Subject to Constant and Time-Varying Communication Delays

  • Damia Taoutaou
  • Silviu-Iulian Niculescu
  • Keqin Gu
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 38)


This chapter addresses the robust stability of some bilateral teleoperation control scheme subject to various constant and/or time-varying delays in the communication channel. The stability conditions arc derived using frequency-domain techniques. More specifically, in the case of constant delays, the stability regions of the systems’ parameters are completely characterized. Next, the analysis is extended to the case of time-varying unccnain delay, and we derive sufficient (closed-loop) stability conditions.


Robust Stability Communication Delay Static Output Feedback Small Gain Theorem Real Positive Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J. A. and Spong, M. W.: Bilateral control of teleopcrators with time delay. IEEE Trans. Automat. Contr. AC-34 (1989) 494–5MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anderson, J. A. and Spong, M. W.: Asymptotic Stability for force reflecting teleopcrator with time delay. In. Journal on Robot. Research (1989) 135–149.Google Scholar
  3. 3.
    Chen, J. and Latchman, H. A.: Frequency sweeping tests for stability independent of delay. IEEE Trans. Automat. Contr., 40 (1995) 1640–16MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cooke, K. L. and van den Dricssche, P.: On zeroes of some transcendental equations. in Funkcialaj Ekvacioj 29 (1986) 77–90.MathSciNetzbMATHGoogle Scholar
  5. 5.
    El’sgol’ts, L. E. and Norkin, S. B.: Introduction to the theory and applications of differential equations with deviating arguments (Mathematics in Science and Eng., 105, Academic PressNew York, 197Google Scholar
  6. 6.
    Eusebi, A. and Melchiori, C.: Force reflecting telemanipulators with time-delay: Stability analysis and control design. IEEE Trans. Robotics & Automation 14 (1998) 635–640.CrossRefGoogle Scholar
  7. 7.
    Gu, K., Kharitonov, V. L. and Chen, J.: Stability of Time-Delay Systems. Berkhauser Boston, 2003.zbMATHCrossRefGoogle Scholar
  8. 8.
    Jury, E.I.: Inners and stability of dynamical systems (2nd Edition, Roben E. Krieger Publ. Malabar. FL, 1982).Google Scholar
  9. 9.
    Kolmanovskii, V. B. and Myshkis, A. D.: Applied Theory of functional differential equations (Kluwer Dordrecht, The Netherlands, 1992).CrossRefGoogle Scholar
  10. 10.
    Lozano, R., Brogliato, B., Egeland, O. and Maschke, B.: Dissipative systems analysis and control. Theory and applications (CES, Springer London, 2000).zbMATHCrossRefGoogle Scholar
  11. 11.
    Lozano, R., Shopra, N. and Spong, M. W.: Passivation of force reflecting bilateral teleoperation with time varying delay. in Proc. 8th Mechalronics Forum Intl Conf., Enschede, The Netherlands (June 2002).Google Scholar
  12. 12.
    Niculescu, S.-I.: Delay effects on stability. A robust control approach (Springer-Verlag Heidelberg, vol. 269, 2001).zbMATHGoogle Scholar
  13. 13.
    Niculescu, S.-I. and Abdallah, C. T.: Delay effects on static output feedback stabilization. in Proc. 39th IEEE Conf. Dec. Contr., Sydney, Australia (December 2000).Google Scholar
  14. 14.
    Niculeseu, S.-I., Abdallah, C.T. and Hokayem, P.: Some remarks on the wave transformation approach for telemanipulators with time-varying distributed delay. in Proc. 4th Asian Control. Conf., Singapore, September 2002.Google Scholar
  15. 15.
    Niculescu, S.-I., Annaswamy, A. M., Hathout, J. P. and Ghoniem, A. F.: Control of Time-Delay Induced Instabilities in Combustion Systems. in Proc. 1st IFAC Symp. Syst. Struct. Contr., Prague (Czech Republic) (2001).Google Scholar
  16. 16.
    Niculescu, S.-I. and Gu, K.: Robust stability of some oscillatory systems including time-varying delay with applications in congestion control. Asian Control Conference, September 2002, Singapore.Google Scholar
  17. 17.
    Niemeyer, G. and Slotine, J.-J. E.: Siable adaplive teleoperation. IEEE J. Oceanic Eng. 16(1991) 152–162.CrossRefGoogle Scholar
  18. 18.
    Niemeyer, G. and $lotine, J.-J. E.: Designing force reflecting teleopcrators with large time delays to appear as virtual tools. in Proc. 1997 IEEE ICRA, Albuquerque, NM (1997) 2212–2218.Google Scholar
  19. 19.
    Niemeyer, G. and Slotine, J. J. E.: Towards force-reflecting Teleoperation Over Internet, in Proc. 1998 IEEE Int. Conf. Robotics Automation. 1909-1915. Leuven (Belgium).Google Scholar
  20. 20.
    Niwlescu, S.-I., Taoutaou, O.. and Lozano, R.: On the closed-loop stability of a teleoperation control scheme subject to communication time-delays. in Proc. 41st IEEE Conf. Dec. Contr., Las Vegas, Nevada, December 2002.Google Scholar
  21. 21.
    Lee, S. and Lee, H.S.: Design of optimal time delayed teleoperator control system. in Proc. 1994 IEEE Int. Conf. Robotics Automation 8–13, San Diego, CL.Google Scholar
  22. 22.
    Spiegel M. R.: Mathematical handbook of formulas and tables (Shaum’s outlines series, MacGraw-Hill NY, 31 st edition, 1993).Google Scholar
  23. 23.
    A. N. Shiryayev. Probability, Springer Verlag, 1996.Google Scholar
  24. 24.
    Ortega, R., Chopra, N. and Spong M.W.: A new passivi ty formulation for bilateral teleoperation with time delay. in Proc. CNRS-NSF Wshop Time Delay Syst., Paris. France, p. 131–137, January 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Damia Taoutaou
    • 1
  • Silviu-Iulian Niculescu
    • 1
  • Keqin Gu
    • 2
  1. 1.HEUDIASYC (UMR CNRS 6599)Université de Technologie de Compiègne, Centre de Recherche de RoyallieuCompiègne, cedexFrance
  2. 2.Department of Mechanical and Industrial EngineeringSouthern Illinois University at EdwarsvilleEdwardsvilleILUSA

Personalised recommendations