Robust Prediction-Dased Control for Unstable Delay Systems

  • Rogelio Lozano
  • Pedro Garcia Gil
  • Pedro Castillo
  • Alejandro Dzul
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 38)


We present a discrete-time prediction based state-feedback controller. It is shown that this controller stabilizes possibly unstable continuous-time delay systems. The stability is shown to be robust with respect uncertainties in the knowledge on the plant parameters, the system delay and the sampling period. The proposed prediction based controller has been tested in a real-time application to control the yaw angular displacement of a 4-rotor mini-helicopter.


Sampling Instant Smith Predictor Time Delay Compensation Rear Motor Finite Spectrum Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astrom KJ. and B. Wittenmark (1997). Computer-Controlled Systems-Theory and Design, Pretince-Hall, third edition.Google Scholar
  2. 2.
    Aldea M. and Gonzalez M. “MaRTE OS: An Ada Kernel for Real-Time Embedded Applications”. Proceedings of the International Conference on Realiable Software Technologies, Ada-Europe-2001, Leuven, Belgium, Lecture Notes in Computer Science, LNCS 2043, May 2001.Google Scholar
  3. 3.
    Brethé D. and Loiseau U. (1998). An effective algorithm for finite spectrum assignment of single-input systems with delays, Mathematics in computers and simulation. 45, 339–348.zbMATHCrossRefGoogle Scholar
  4. 4.
    Kamen E.W, Khargonekar P.P. and A. Tannenbaum (1986). Proper stable bezout factorizations and feedback control of linear time delay systems, Int. J. Contr., Vol. 43No.3, 837–857.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    R. Lozano, B. Brogliato, O. Egeland, B. Maschke. Passivity-based control system analysis and design. Springer-Verlag. Communications and Control Engineering Series, 2000. ISBN 1-85233-285-9.Google Scholar
  6. 6.
    Manitius, A. Z. and A.W Olbrot (1979). Finite Spectrum Assignment problem for Systems with Delays, IEEE Trans. Autom. Contr., Vol. AC-24No.4, 541–553.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mondié S., Dambrine M., Santos O. (200la). Approximation of control laws with distributed delays: a necessary condition for stability. IFAC Conference on Systems. Structure and Control Prague, Czek Republic.Google Scholar
  8. 8.
    Mondié S., Lozano, R. and Collado J. (2001b). Reselling Process-Model Control for unstable systems with delay, 40th IEEE Conference on Decision and Control, Orlando, Florida.Google Scholar
  9. 9.
    Mondié S., Garda P., Lozano R. (2002). Resetting Smith Predictor for the Control of Unstable Systems with Delay, IFAC 15th Triennial World Congress, Barcelona. Spain, 2002.Google Scholar
  10. 10.
    Niculescu S. (2001). Delay effects on stability: a robust control approach. SpringerVerlag Heidelberg, Germany.zbMATHGoogle Scholar
  11. 11.
    S. Niculcecu, R. Lozano. On the passivity of linear delay systems. tiIEEE Transactiolls on Automatic Control, pp460–464, April 2001Google Scholar
  12. 12.
    Morse A.S., Ring Models for Delay-Differential Systems. Automatica, Vol. 12, 529–531, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Palmor Z.J. (1996). Time delay Compensation-Smith predictor and its modifications, in The Control Handbook, (W.S. Levine, Eds), CRSC Press, 224–237, 1996Google Scholar
  14. 14.
    POSIX. 13 (1998) IEEE Std. 1003.13-1998. Information Technology-Standardized Application Enviroment Profile-POSIX Realtime Application Support (AEP). The Institute of Electrical and Electronics Engineers.Google Scholar
  15. 15.
    Smith O.J.M. (1959). Closer Control of loops with dead time, Chem. Eng. Prog., 53, 217–219.Google Scholar
  16. 16.
    Watanabe K., Ito, M. (1981). A process model control for linear systems with delay, IEEE Trans. Autom. Contr., Vol. AC-26No. 6, 1261–1268.Google Scholar
  17. 17.
    Fastrack 3Space Polhemus, User’s Manual, Colchester, Vermont, USA.Google Scholar
  18. 18.
    C. Foias, H. Ozbay, A. Tannenbaum. Robust Control of Infinite Dimensional Systems: Frecuency Domain Methods, Lecture Notes in Control and Information Sciences, No. 209. Springer-Verlag, London, 1996, ISBN 3-540-19994-2.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rogelio Lozano
    • 1
  • Pedro Garcia Gil
    • 2
  • Pedro Castillo
    • 1
  • Alejandro Dzul
    • 3
  1. 1.Heudiasyc-UTC, UMR CNRS 6599CompiegneFrance
  2. 2.Dept. of Systems Engineering and ControlUniversidad Politecnica de ValenciaValenciaSpain
  3. 3.División de Estudios de Posgrado e InvestigaciónInstituto Tecnológico da la LagunaTorreón, CoahuilaMéxico

Personalised recommendations