Skip to main content

Software for Stability and Bifurcation Analysis of Delay Differential Equations and Applications to Stabilization

  • Conference paper
Advances in Time-Delay Systems

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 38))

Abstract

DDE-BIFTOOL is a Matlab software package for the stability and bifurcation analysis of parameter-dependent systems of delay differential equations. Using continuation, branches of steady state solutions and periodic solutions can be computed. The local stability of a solution is determined by computing relevant eigenvalues (steady state solutions) or Floquet Multipliers (periodic solutions). Along branches of solutions, bifurcations can be detected and branches of fold or Hopf bifurcation points can be computcd. We outline the capabilities of the package and some of the numerical methods upon which it is based. We illustrate the usage of the package for the analysis of two model problems and we outline applications and extensions towards controller synthesis problems. We explain how its stability routines can be used for the implementation of the continuous pole placement method, which allows to solve stabilization problems where multiple parameters need to be tuned simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argyris, J., Faust, G. and Haase, M.: An Exploration of Chaos — An Introduction for Natural Scientist and Engineers, North Holland Amsterdam: 1994.

    Google Scholar 

  2. Alsing, P.M., Kovanis, V., Gavrielides, A. and Emeux, T.: “Lang and Kobayashi phase equation,“ Phys. Rev., A, 53 (1996) 4429–4434.

    Article  Google Scholar 

  3. Ascher, U.M., Mattheij, R.M.M., and Russel, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Prentice Hall: 1988.

    Google Scholar 

  4. Azbelev, N.V., Maksimov, V.P., and Rakhmatullina, L.F: Introduction to the Theory of Functional Differential Equations (in Russian), Nauka Moscow, 1991.

    MATH  Google Scholar 

  5. Back, A., Guekenheimer, J., Myers, M., Wicklin, F. and Worfolk, P.: “DsTool: Computer Assisted Exploration of Dynamical Systems,” AMS Notices, 39 (1992) 303–309.

    Google Scholar 

  6. Bellman, R. and Cooke, K.L.: Differential-Difference Equations, Mathematics in Science and Engineering, Academic Press, 1963.

    Google Scholar 

  7. Bocharov, G.A,: “Modelling the dynamics of LCMY infcction in mice: conventional and exhaustive CTL responses,” J.theor. Biol. bf 192 (1998) 283–308.

    Article  Google Scholar 

  8. Bocharov, G.A, and Rihan, EA.: “Numerical modelling in biosciences using delay differential equations,” J. Comput. Appl. Math., 125 (2000) 183–199.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chow, S.-N., and Hale, J.K.: Melhods of Bifurcation Theory, Springer New York, 1982.

    Google Scholar 

  10. Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M. and Walther, H,-O.: Delay Equations: Functional-, Complex-. and Nonlinear Analysis, Springer New York. 1995.

    MATH  Google Scholar 

  11. Docdel, E.J., Keller, H.B. and Kernevez, J.P,: “Numerictal analysis and control of bifurcation problems (I): bifurcation in finite dimensions,” Internal. J. of Bifur. Chaos, 1 (1991) 493–520.

    Article  Google Scholar 

  12. Doedel, E.J., Keller, H.B. and Kemevez, J.P.: “Numerical analysis and control of bifurcation problems (II) bifurcation in infinite dimensions.” Internat. J, Bifur. Chaos, 1 (1991) 745–772.

    Article  MATH  Google Scholar 

  13. Doedel, EJ., Champncys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B. and Wang, X.:, AUT097: Continuation and bifurcation software for ordinary differential equations; available via ftp.cs.concordia.ca in directory pub/doedel/auto, 1997.

    Google Scholar 

  14. Dragan, V. and Ionita, A.: “Stabilization of singularly perturbed linear systems by state feedback with delays,” Proceedings of the Fourteenth International Symposium on Mathematical Theory of Networks and Systems, Perpignan France, 2000

    Google Scholar 

  15. Driver, R.D.: Ordinary and Delay Differential Equations, Springcr Verlag: 1977.

    Book  MATH  Google Scholar 

  16. El’sgoJ’tS, L.E. and Norkin, S.B.: Introduction to the Theory alld Application of Differential Equations wilh Deviating Arguments, (Academic Press: 1973)

    Google Scholar 

  17. Engelborghs, K.: Numerical Bifurcalion Analysis of Delay Differential Equations (Dept. of Computer Science K.U. Leuven, May 2000, Leuven, Belgium).

    Google Scholar 

  18. Engelborghs, K. and Roose, D.: “On stability of LMS-methods and characteristic roots of delay differential equations,” SIAM J. Num. Analysis, 40 (2002) 629–650.

    Article  MathSciNet  MATH  Google Scholar 

  19. Engelborghs, K., Luzyanina, T. and Samaey, G.: “DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations,” Internal Report TW-330, 2001, Depanmcnt of Computer Science, K.U.Lcuven Belgium. Available from www.cs.kuleuven.ac.be/~koen/delay/ddebiftool.shtml.

    Google Scholar 

  20. Engelborghs, K. and Doedel, E.: “Stability of piecewise polynomial collocation for computing periodic solutions of delay differential equations,” in Numer. Math., 91 (2002) 627–648.

    Article  MathSciNet  MATH  Google Scholar 

  21. Engelborghs, K., Lemaire, Y., Bélair, J. and Roose, D.: “Numerical bifurcation analysis of delay differential equations arising from physiology modeling,” J. Marh. Biol., 42 (2001) 361–385.

    MATH  Google Scholar 

  22. Engelborghs, K., and Roose, D.: “Numerical computation of stability and detection of Hopf bifurcations of steady state solutions of delay differential equations,” itAdv. Comput. Math. 10 (1999) 271–289.

    Article  MathSciNet  MATH  Google Scholar 

  23. Engelborghs, K., Luzyanina, T., in ’t Hout, K. J. and Roose, D.: “Collocation methods for the computation of periodic solutions of delay differential equations,” SIAM J. Sci. Comput., 22 (2000) 1593–1609.

    Article  MathSciNet  MATH  Google Scholar 

  24. Engelborghs, K., Luzyanina, T. and Roose, D.: “On the bifurcation analysis of a delay differential equation using DDE-BIFTOOL.” 16th lMACS World Congress 2000 Proceedings, 2000, 1–6.

    Google Scholar 

  25. Engelborghs, K., Luzyanina, K. and Roose. D.: “Numerical bifurcation analysis of delay differential equations using DDE-BiFTOOL,” ACM Transactions on Mathematical Software, 28 (2002) 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  26. Haegeman, B., Engelborghs, K., Roose, D., Pieroux, D. and Erneux, T.: “Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback,” (2002) Phys.Rev.E. (accepted 2002).

    Google Scholar 

  27. Hohl, A. and Gavrielides, A.: “Bifurcation cascade in a semiconductor laser subject to optical feedback,” Phys. Rev. Lett. 82 (1999) 1148–1151.

    Article  Google Scholar 

  28. Hollot, C.V. and Chait, Y.: “Nonlinear Stability Analysis for a class of TCP/AQM Network,” Proc. of the 40th IEfE COnf Dec. Contr., Orlando, FL, USA, 2001.

    Google Scholar 

  29. Lang, R. and Kobayashi, K.: “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron., QE-16 (1980) 347–355.

    Article  Google Scholar 

  30. Luzyanina, T., Engelborghs, K., Ehl, S., Klenerman, P. and Bocharov, G.: “Low level viral persistence after infection with LCMV: a quantitative insight through numerical bifurcation analysis,” Internal Report TW-321 (2001), Department of Computer Science K.U.Leuven, Belgium.

    Google Scholar 

  31. Melchor-Aguilar, D., Michiels, W. and Nieulescu, S.-I.: “Remarks on Nonlinear Stability Analysis for a class of TCP/AQM Networks,” (2003) (in preparation).

    Google Scholar 

  32. Michiels, W., Engelborghs, K., Vansevenant, P. and Roose, D.: “The continuous pole placement method for delay equations,” Automatica, 38 (2002) 747–761. a33._Michiels, W. and Roose, D.:’ stabilization with delayed Slate feedback: a numerical study,” Intternational Journal of Bifurcation and Chaos, 12:6 (2002) 1309–1320.

    Article  MathSciNet  MATH  Google Scholar 

  33. Michiels, W., and Roose, D.: “An eigenvalue based approach for the robust stabilization of linear time-delay systems,” International Journal of Control, 76:7 (2003) 678–686.

    Article  MathSciNet  MATH  Google Scholar 

  34. Michiels, W. and Roose, D.: “Global stabilization of multiple integrators with time-delay and input constraints,” Proc. 3th IFAC Workshop on Time-Delay Systems, Santa Fe, NM, 266–271, 2001.

    Google Scholar 

  35. Niculescu, S.-I. and Michiels, W.: “Stabilizing a chain of integrators using multiple delays,” IEEE Transactions on Automatic Control (2003) (accepted).

    Google Scholar 

  36. Pieroux, D., Erneux, T., Luzyanina, T. and Engelborghs, K.: “Interacting pairs of periodic solutions lead to tori in lasers subject to delayed fcedback,” Physical Review E 63 (2001).

    Google Scholar 

  37. Samaey, G., Engelborghs, K. and Roose, D.: “Numerical computation of homoclinic orbits in delay differential equations,” Numerical algorithms, 30 (2002) 335–352.

    Article  MathSciNet  MATH  Google Scholar 

  38. Shampine, L.F. and Thompson, S.: Solving ddes in matlab, Southern Methodist University and Radford University Dallas, Radford, (http://www.runet.edu/~thompson/webddes/), 2000.

    Google Scholar 

  39. Shayer, L.P. and Campbell, S.A.: “Stability, bifurcation and multistability in a system of two coupled neurons with multiple time delays,” SIAM J. Appl. Math., 61 (2000) 673–700.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roose, D., Luzyanina, T., Engelborghs, K., Michiels, W. (2004). Software for Stability and Bifurcation Analysis of Delay Differential Equations and Applications to Stabilization. In: Niculescu, SI., Gu, K. (eds) Advances in Time-Delay Systems. Lecture Notes in Computational Science and Engineering, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18482-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18482-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20890-7

  • Online ISBN: 978-3-642-18482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics