Software for Stability and Bifurcation Analysis of Delay Differential Equations and Applications to Stabilization

  • Dirk Roose
  • Tatyana Luzyanina
  • Koen Engelborghs
  • Wim Michiels
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 38)


DDE-BIFTOOL is a Matlab software package for the stability and bifurcation analysis of parameter-dependent systems of delay differential equations. Using continuation, branches of steady state solutions and periodic solutions can be computed. The local stability of a solution is determined by computing relevant eigenvalues (steady state solutions) or Floquet Multipliers (periodic solutions). Along branches of solutions, bifurcations can be detected and branches of fold or Hopf bifurcation points can be computcd. We outline the capabilities of the package and some of the numerical methods upon which it is based. We illustrate the usage of the package for the analysis of two model problems and we outline applications and extensions towards controller synthesis problems. We explain how its stability routines can be used for the implementation of the continuous pole placement method, which allows to solve stabilization problems where multiple parameters need to be tuned simultaneously.


Periodic Solution Hopf Bifurcation Steady State Solution Homoclinic Orbit Bifurcation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argyris, J., Faust, G. and Haase, M.: An Exploration of Chaos — An Introduction for Natural Scientist and Engineers, North Holland Amsterdam: 1994.Google Scholar
  2. Alsing, P.M., Kovanis, V., Gavrielides, A. and Emeux, T.: “Lang and Kobayashi phase equation,“ Phys. Rev., A, 53 (1996) 4429–4434.CrossRefGoogle Scholar
  3. 3.
    Ascher, U.M., Mattheij, R.M.M., and Russel, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Prentice Hall: 1988.Google Scholar
  4. 4.
    Azbelev, N.V., Maksimov, V.P., and Rakhmatullina, L.F: Introduction to the Theory of Functional Differential Equations (in Russian), Nauka Moscow, 1991.zbMATHGoogle Scholar
  5. 5.
    Back, A., Guekenheimer, J., Myers, M., Wicklin, F. and Worfolk, P.: “DsTool: Computer Assisted Exploration of Dynamical Systems,” AMS Notices, 39 (1992) 303–309.Google Scholar
  6. 6.
    Bellman, R. and Cooke, K.L.: Differential-Difference Equations, Mathematics in Science and Engineering, Academic Press, 1963.Google Scholar
  7. 7.
    Bocharov, G.A,: “Modelling the dynamics of LCMY infcction in mice: conventional and exhaustive CTL responses,” J.theor. Biol. bf 192 (1998) 283–308.CrossRefGoogle Scholar
  8. 8.
    Bocharov, G.A, and Rihan, EA.: “Numerical modelling in biosciences using delay differential equations,” J. Comput. Appl. Math., 125 (2000) 183–199.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chow, S.-N., and Hale, J.K.: Melhods of Bifurcation Theory, Springer New York, 1982.Google Scholar
  10. 10.
    Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M. and Walther, H,-O.: Delay Equations: Functional-, Complex-. and Nonlinear Analysis, Springer New York. 1995.zbMATHGoogle Scholar
  11. 11.
    Docdel, E.J., Keller, H.B. and Kernevez, J.P,: “Numerictal analysis and control of bifurcation problems (I): bifurcation in finite dimensions,” Internal. J. of Bifur. Chaos, 1 (1991) 493–520.CrossRefGoogle Scholar
  12. 12.
    Doedel, E.J., Keller, H.B. and Kemevez, J.P.: “Numerical analysis and control of bifurcation problems (II) bifurcation in infinite dimensions.” Internat. J, Bifur. Chaos, 1 (1991) 745–772.zbMATHCrossRefGoogle Scholar
  13. Doedel, EJ., Champncys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B. and Wang, X.:, AUT097: Continuation and bifurcation software for ordinary differential equations; available via in directory pub/doedel/auto, 1997.Google Scholar
  14. 14.
    Dragan, V. and Ionita, A.: “Stabilization of singularly perturbed linear systems by state feedback with delays,” Proceedings of the Fourteenth International Symposium on Mathematical Theory of Networks and Systems, Perpignan France, 2000Google Scholar
  15. 15.
    Driver, R.D.: Ordinary and Delay Differential Equations, Springcr Verlag: 1977.zbMATHCrossRefGoogle Scholar
  16. 16.
    El’sgoJ’tS, L.E. and Norkin, S.B.: Introduction to the Theory alld Application of Differential Equations wilh Deviating Arguments, (Academic Press: 1973)Google Scholar
  17. 17.
    Engelborghs, K.: Numerical Bifurcalion Analysis of Delay Differential Equations (Dept. of Computer Science K.U. Leuven, May 2000, Leuven, Belgium).Google Scholar
  18. 18.
    Engelborghs, K. and Roose, D.: “On stability of LMS-methods and characteristic roots of delay differential equations,” SIAM J. Num. Analysis, 40 (2002) 629–650.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Engelborghs, K., Luzyanina, T. and Samaey, G.: “DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations,” Internal Report TW-330, 2001, Depanmcnt of Computer Science, K.U.Lcuven Belgium. Available from Scholar
  20. 20.
    Engelborghs, K. and Doedel, E.: “Stability of piecewise polynomial collocation for computing periodic solutions of delay differential equations,” in Numer. Math., 91 (2002) 627–648.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Engelborghs, K., Lemaire, Y., Bélair, J. and Roose, D.: “Numerical bifurcation analysis of delay differential equations arising from physiology modeling,” J. Marh. Biol., 42 (2001) 361–385.zbMATHGoogle Scholar
  22. 22.
    Engelborghs, K., and Roose, D.: “Numerical computation of stability and detection of Hopf bifurcations of steady state solutions of delay differential equations,” itAdv. Comput. Math. 10 (1999) 271–289.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Engelborghs, K., Luzyanina, T., in ’t Hout, K. J. and Roose, D.: “Collocation methods for the computation of periodic solutions of delay differential equations,” SIAM J. Sci. Comput., 22 (2000) 1593–1609.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Engelborghs, K., Luzyanina, T. and Roose, D.: “On the bifurcation analysis of a delay differential equation using DDE-BIFTOOL.” 16th lMACS World Congress 2000 Proceedings, 2000, 1–6.Google Scholar
  25. 25.
    Engelborghs, K., Luzyanina, K. and Roose. D.: “Numerical bifurcation analysis of delay differential equations using DDE-BiFTOOL,” ACM Transactions on Mathematical Software, 28 (2002) 1–21.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Haegeman, B., Engelborghs, K., Roose, D., Pieroux, D. and Erneux, T.: “Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback,” (2002) Phys.Rev.E. (accepted 2002).Google Scholar
  27. 27.
    Hohl, A. and Gavrielides, A.: “Bifurcation cascade in a semiconductor laser subject to optical feedback,” Phys. Rev. Lett. 82 (1999) 1148–1151.CrossRefGoogle Scholar
  28. 28.
    Hollot, C.V. and Chait, Y.: “Nonlinear Stability Analysis for a class of TCP/AQM Network,” Proc. of the 40th IEfE COnf Dec. Contr., Orlando, FL, USA, 2001.Google Scholar
  29. 29.
    Lang, R. and Kobayashi, K.: “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron., QE-16 (1980) 347–355.CrossRefGoogle Scholar
  30. 30.
    Luzyanina, T., Engelborghs, K., Ehl, S., Klenerman, P. and Bocharov, G.: “Low level viral persistence after infection with LCMV: a quantitative insight through numerical bifurcation analysis,” Internal Report TW-321 (2001), Department of Computer Science K.U.Leuven, Belgium.Google Scholar
  31. 31.
    Melchor-Aguilar, D., Michiels, W. and Nieulescu, S.-I.: “Remarks on Nonlinear Stability Analysis for a class of TCP/AQM Networks,” (2003) (in preparation).Google Scholar
  32. 32.
    Michiels, W., Engelborghs, K., Vansevenant, P. and Roose, D.: “The continuous pole placement method for delay equations,” Automatica, 38 (2002) 747–761. a33._Michiels, W. and Roose, D.:’ stabilization with delayed Slate feedback: a numerical study,” Intternational Journal of Bifurcation and Chaos, 12:6 (2002) 1309–1320.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 34.
    Michiels, W., and Roose, D.: “An eigenvalue based approach for the robust stabilization of linear time-delay systems,” International Journal of Control, 76:7 (2003) 678–686.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 35.
    Michiels, W. and Roose, D.: “Global stabilization of multiple integrators with time-delay and input constraints,” Proc. 3th IFAC Workshop on Time-Delay Systems, Santa Fe, NM, 266–271, 2001.Google Scholar
  35. 36.
    Niculescu, S.-I. and Michiels, W.: “Stabilizing a chain of integrators using multiple delays,” IEEE Transactions on Automatic Control (2003) (accepted).Google Scholar
  36. 37.
    Pieroux, D., Erneux, T., Luzyanina, T. and Engelborghs, K.: “Interacting pairs of periodic solutions lead to tori in lasers subject to delayed fcedback,” Physical Review E 63 (2001).Google Scholar
  37. 38.
    Samaey, G., Engelborghs, K. and Roose, D.: “Numerical computation of homoclinic orbits in delay differential equations,” Numerical algorithms, 30 (2002) 335–352.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 39.
    Shampine, L.F. and Thompson, S.: Solving ddes in matlab, Southern Methodist University and Radford University Dallas, Radford, (, 2000.Google Scholar
  39. 40.
    Shayer, L.P. and Campbell, S.A.: “Stability, bifurcation and multistability in a system of two coupled neurons with multiple time delays,” SIAM J. Appl. Math., 61 (2000) 673–700.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dirk Roose
    • 1
  • Tatyana Luzyanina
    • 1
  • Koen Engelborghs
    • 1
  • Wim Michiels
    • 1
  1. 1.Department of Computer ScienceK.U. LeuvenHeverleeBelgium

Personalised recommendations