Inference of Large Phylogenies Using Neighbour-Joining

  • Martin Simonsen
  • Thomas Mailund
  • Christian N. S. Pedersen
Part of the Communications in Computer and Information Science book series (CCIS, volume 127)


The neighbour-joining method is a widely used method for phylogenetic reconstruction which scales to thousands of taxa. However, advances in sequencing technology have made data sets with more than 10,000 related taxa widely available. Inference of such large phylogenies takes hours or days using the Neighbour-Joining method on a normal desktop computer because of the O(n 3) running time. RapidNJ is a search heuristic which reduce the running time of the Neighbour-Joining method significantly but at the cost of an increased memory consumption making inference of large phylogenies infeasible. We present two extensions for RapidNJ which reduce the memory requirements and allows phylogenies with more than 50,000 taxa to be inferred efficiently on a desktop computer. Furthermore, an improved version of the search heuristic is presented which reduces the running time of RapidNJ on many data sets.


Search Heuristic Hard Disk Drive Memory Consumption External Memory Garbage Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggerwal, A., Vitter, T.S.: The input output complexity of sorting and related problems. Communications of the ACM 31(9), 1116–1127 (1988)CrossRefGoogle Scholar
  2. 2.
    Alm, E.J., Huang, K.H., Price, M.N., Koche, R.P., Keller, K., Dubchak, I.L., Arkin, A.P.: The microbesonline web site for comparative genomics. Genome Research 15(7), 1015–1022 (2005)CrossRefGoogle Scholar
  3. 3.
    Elias, I., Lagergren, J.: Fast neighbor joining. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1263–1274. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Finn, R.D., Mistry, J., Schuster-Böckler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S.R., Sonnhammer, E.L.L., Bateman, A.: Pfam: clans, web tools and services. Nucleic Acids Research Database Issue 34, D247–D251 (2006)CrossRefGoogle Scholar
  5. 5.
    Howe, K., Bateman, A., Durbin, R.: QuickTree: Building huge neighbour-joining trees of protein sequences. Bioinformatics 18(11), 1546–1547 (2002)CrossRefGoogle Scholar
  6. 6.
    Mailund, T., Brodal, G.S., Fagerberg, R., Pedersen, C.N.S., Philips, D.: Recrafting the neighbor-joining method. BMC Bioinformatics 7(29) (2006)Google Scholar
  7. 7.
    Mailund, T., Pedersen, C.N.S.: QuickJoin – fast neighbour-joining tree reconstruction. Bioinformatics 20, 3261–3262 (2004)CrossRefGoogle Scholar
  8. 8.
    Ott, M., Zola, J., Stamatakis, A., Aluru, S.: Large-scale maximum likelihood-based phylogenetic analysis on the ibm bluegene/l. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp. 1–11 (2007)Google Scholar
  9. 9.
    Price, M.N., Dehal, P.S., Arkin, A.P.: Fasttree: Computing large minimum-evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26(7), 1641–1650 (2009)CrossRefGoogle Scholar
  10. 10.
    Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425 (1987)Google Scholar
  11. 11.
    Sheneman, L., Evans, J., Foster, J.A.: Clearcut: A fast implementation of relaxed neighbor-joining. Bioinformatics 22(22), 2823–2824 (2006)CrossRefGoogle Scholar
  12. 12.
    Simonsen, M., Mailund, T., Pedersen, C.N.S.: Rapid neighbour-joining. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 113–122. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Stamatakis, A.: Raxml-vi-hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Oxford Journals 22(21), 2688–2690 (2006)Google Scholar
  14. 14.
    Studier, J.A., Kepler, K.J.: A note on the neighbour-joining method of Saitou and Nei. Molecular Biology and Evolution 5, 729–731 (1988)Google Scholar
  15. 15.
    Wheeler, T.J.: Large-scale neighbor-joining with ninja. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 375–389. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Simonsen
    • 1
  • Thomas Mailund
    • 1
  • Christian N. S. Pedersen
    • 1
  1. 1.Bioinformatics Research Centre (BIRC)Aarhus UniversityÅrhus CDenmark

Personalised recommendations