ReHap: A Framework for Single Individual Haplotyping from Next-Generation Sequencing Data

  • F. Geraci
  • M. Pellegrini
Part of the Communications in Computer and Information Science book series (CCIS, volume 127)


Next-Generation Sequencing technologies (NGS) are trasforming today’s biology by making it economically feasible to read the complete genome of individuals. Single nucleotide polymorphism (SNP) is the most common form of individual DNA variation; and the set of SNPs present in a chromosome (called the haplotype) is of interest in a wide area of applications in molecular biology and biomedicine. Personalized haplotyping of (portions of/all) the chromosomes of individuals through NGS is one of themost promising basic ingredients leading to effective personalized medicine (including diagnosis, and eventually therapy).


Baseline Algorithm Reconstruction Rate Bioinformatics Community Single Nucleotide Polymorphism Position Haplotype Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pop, M.: Shotgun sequence assembly. Advances in Computers 60, 193–248 (2004)CrossRefGoogle Scholar
  2. 2.
    Istrail, S., Sutton, G.G., Florea, L., Halpern, A.L., Mobarry, C.M., Lippert, R., Walenz, B., Shatkay, H., Dew, I., Miller, J.R., Flanigan, M.J., Edwards, N.J., Bolanos, R., Fasulo, D., Halldorsson, B.V., Hannenhalli, S., Turner, R., Yooseph, S., Lu, F., Nusskern, D.R., Shue, B.C., Zheng, X.H., Zhong, F., Delcher, A.L., Huson, D.H., Kravitz, S.A., Mouchard, L., Reinert, K., Remington, K.A., Clark, A.G., Waterman, M.S., Eichler, E.E., Adams, M.D., Hunkapiller, M.W., Myers, E.W., Venter, J.C.: Whole-genome shotgun assembly and comparison of human genome assemblies. Proceedings of the National Academy of Sciences of the United States of America 101(7), 1916–1921 (2004)CrossRefGoogle Scholar
  3. 3.
    Metzker, M.: Sequencing technologies - the next generation. Nature reviews 11 (2010)Google Scholar
  4. 4.
    Schuster, S.: Next-generation sequencing trnsforms today’s biology. Nature Methods 5(1) (January 2008)Google Scholar
  5. 5.
    Metzker, M.: Emerging technologies in dna sequencing. Genome Research 15, 1767–1776 (2005)CrossRefGoogle Scholar
  6. 6.
    Crawford, D., Nickerson, D.: Definition and clinical importance of haplotypes. Annu. Rev. Med. 56, 303–320 (2005)CrossRefGoogle Scholar
  7. 7.
    Levy, S., Sutton, G., Ng, P., Feuk, L., Halpern, A., et al.: The diploid genome sequence of an individual human. PLoS Biology 5(10) (2007)Google Scholar
  8. 8.
    Wang, J., et al.: The diploid genome sequence of an asian individual. Nature 456, 60–65 (2008)CrossRefGoogle Scholar
  9. 9.
    Wheeler, D., et al.: The complete genome of an individual by massively parallel dna sequencing. Nature 452, 872–876 (2008)CrossRefGoogle Scholar
  10. 10.
    Mardis, E.R.: Anticipating the $1,000 genome. Genome Biology 7 (July 2006)Google Scholar
  11. 11.
    von Bubnoff, A.: Next-generation sequencing: The race is on. Cell 132(5), 721–723 (2008)CrossRefGoogle Scholar
  12. 12.
    Iles, M.M.: What can genome-wide association studies tell us about the genetics of common disease? PLoS Genet. 4(2) (Feburary 2008)Google Scholar
  13. 13.
    Schork, N.J., Murray, S.S., Frazer, K.A., Topol, E.J.: Common vs. rare allele hypotheses for complex diseases. Current Opinion in Genetics & Development 19(3), 212–219 (2009)CrossRefGoogle Scholar
  14. 14.
    Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., Istrail, S.: A survey of computational methods for determining haplotypes. In: Istrail, S., Waterman, M.S., Clark, A. (eds.) DIMACS/RECOMB Satellite Workshop 2002. LNCS (LNBI), vol. 2983, pp. 26–47. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Zhao, Y., Xu, Y., Zhang, Q., Chen, G.: An overview of the haplotype problems and algorithms. Frontiers of Computer Science in China 1(3), 272–282 (2007)CrossRefGoogle Scholar
  16. 16.
    Bonizzoni, P., Vedova, G.D., Dondi, R., Li, J.: The haplotyping problem: an overview of computational models and solutions. J. Comput. Sci. Technol. 18(6), 675–688 (2003)zbMATHCrossRefGoogle Scholar
  17. 17.
    Morozova, O., Marra, M.A.: Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5), 255–264 (2008)CrossRefGoogle Scholar
  18. 18.
    Rizzi, R., Bafna, V., Istrail, S., Lancia, G.: Practical algorithms and fixed-parameter tractability for the single individual SNP haplotyping problem. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 29–43. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Li, L., Kim, J.H., Waterman, M.S.: Haplotype reconstruction from SNP alignment. In: Proceedings of the Seventh Annual International Conference on Computational Molecular Biology, pp. 207–216. ACM Press, New York (2003)Google Scholar
  20. 20.
    Panconesi, A., Sozio, M.: Fast hare: A fast heuristic for single individual SNP haplotype reconstruction. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 266–277. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Zhao, Y.Y., Wu, L.Y., Zhang, J.H., Wang, R.S., Zhang, X.S.: Haplotype assembly from aligned weighted SNP fragments. Computational Biology and Chemistry 29(4), 281–287 (2005)zbMATHCrossRefGoogle Scholar
  22. 22.
    Lindsay, S.J., Bonfield, J.K., Hurles, M.E.: Shotgun haplotyping: a novel method for surveying allelic sequence variation. Nucl. Acids Res. 33(18) (2005)Google Scholar
  23. 23.
    Wang, Y., Feng, E., Wang, R.: A clustering algorithm based on two distance functions for mec model. Computational Biology and Chemistry 31(2), 148–150 (2007)zbMATHCrossRefGoogle Scholar
  24. 24.
    Cilibrasi, R., van Iersel, L., Kelk, S., Tromp, J.: On the complexity of the single individual SNP haplotyping problem. Algorithmica (2007)Google Scholar
  25. 25.
    Genovese, L., Geraci, F., Pellegrini, M.: Speedhap: An accurate heuristic for the single individual snp haplotyping problem with many gaps, high reading error rate and low coverage. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5(4), 492–502 (2008)CrossRefGoogle Scholar
  26. 26.
    Chen, Z., Fu, B., Schweller, R.T., Yang, B., Zhao, Z., Zhu, B.: Linear time probabilistic algorithms for the singular haplotype reconstruction problem from snp fragments. In: Brazma, A., Miyano, S., Akutsu, T. (eds.) APBC, vol. 6, pp. 333–342. Imperial College Press, London (2008)Google Scholar
  27. 27.
    Bansal, V., Bafna, V.: Hapcut: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24(16), i153–i159 (2008)CrossRefGoogle Scholar
  28. 28.
    Consortium, T.I.H.: A haplotype map of the human genome. Nature 437, 1299–1320 (2005)CrossRefGoogle Scholar
  29. 29.
    Barrett, J.C., Fry, B., Maller, J., Daly, M.J.: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2), 263–265 (2005)CrossRefGoogle Scholar
  30. 30.
    Myers, G.: A dataset generator for whole genome shotgun sequencing. In: Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, pp. 202–210. AAAI Press, Menlo Park (1999)Google Scholar
  31. 31.
    McQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probabilily, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • F. Geraci
    • 1
  • M. Pellegrini
    • 1
  1. 1.Istituto di Informatica e TelematicaCNR – Consiglio Nazionale delle RicerchePisaItaly

Personalised recommendations