Advertisement

Thermal Characteristics of Microcantilever Biosensors

  • Mohd. Zahid Ansari
  • Chongdu Cho
Part of the Communications in Computer and Information Science book series (CCIS, volume 127)

Abstract

This study investigates the thermal deflection characteristics of microcantilever biosensors due to bimetallic effects. Thermal deflections are a major source of noise in microcantilever biosensors. Therefore, by characterising the thermal behaviour, the accuracy of the biosensors can be improved significantly. A commercial finite element analysis software ANSYS Multiphysics is used to analyse the deflection characteristics of gold-coated silicon microcantilevers. The cantilever is first subject to temperature increase and then to combined temperature increase and surface stress. The simulation results are compared against analytical and available experimental results. Results show that both thermal stress and surface stress have linear effect on the cantilever deflection and can be added algebraically to determine the absolute deflection produced entirely by the surface stress. Further, we show that by using double-coated silicon microcantilevers thermal deflections in the biosensors can be eliminated.

Keywords

Coefficient of thermal expansion (CTE) Thermal strain Bimetallic effects Microcantilever biosensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnes, J.R., Stephenson, R.J., Woodburn, C.N.: A femtojoule calorimeter using micromechanical sensors. Rev. Sci. Instrum. 65, 3793–3798 (1994)CrossRefGoogle Scholar
  2. 2.
    Hennemeyer, M., Burghardt, S., Stark, R.W.: Cantilever micro-rheometer for the characterization of sugar solutions. Sensors 8, 10–22 (2008)CrossRefGoogle Scholar
  3. 3.
    Passian, A., Evans, P.G., Varma, V.K.: Piezoresistive detection of acoustic waves. Rev. Sci. Instrum. 74, 1031–1035 (2003)CrossRefGoogle Scholar
  4. 4.
    Wachter, A.E.A., Thundat, T., Oden, P.I.: Remote optical detection using microcantilevers. Rev. Sci. Instrum. 67, 3434–3439 (1996)CrossRefGoogle Scholar
  5. 5.
    Nordstrom, M., Keller, S., Lillemose, M., Johansson, A., Dohn, S., Haefliger, D., Blagoi, G., Havsteen-Jakobsen, M., Boisen, A.: SU-8 cantilevers for bio/chemical sensing; fabrication, characterisation and development of novel read-out methods. Sensors 8, 1595–1612 (2008)CrossRefGoogle Scholar
  6. 6.
    Qazi, M., Koley, G.: NO2 detection using microcantilever based potentiometry. Sensors 8, 7144–7156 (2008)CrossRefGoogle Scholar
  7. 7.
    Suri, A.R., Kaur, J., Gandhi, S., Shekhawat, G.S.: Label-free ultra-sensitive detection of atrazine based on nanomechanics. Nanotechnol. 19, 235502–235600 (2008)CrossRefGoogle Scholar
  8. 8.
    McKendry, R., Zhang, J., Arntz, Y., Strunz, T., Hegner, M., Lang, H.P., Baller, M.K., Certa, U., Meyer, E., Guntherodt, H.J., Gerber, C.: Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl. Acad. Sci. 99, 9783–9788 (2002)CrossRefGoogle Scholar
  9. 9.
    Arntz, Y., Seelig, J.D., Lang, H.P., Zhang, J., Hunziker, P., Ramseyer, J.P., Meyer, E., Hegner, M., Gerber, C.: Label-free protein assay based on a nanomechanical cantilever array. Nanotechnol. 14, 86–90 (2003)CrossRefGoogle Scholar
  10. 10.
    Zhang, J., Lang, H.P., Huber, F., Bietsch, A., Grange, W., Certa, U., McKendry, R., Guntherodt, H.J., Hegner, M., Gerber, C.H.: Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotechnol. 1, 214–220 (2006)CrossRefGoogle Scholar
  11. 11.
    Knowles, T.P.J., Shu, W., Huber, F., Lang, H.P., Gerber, C., Dobson, C.M., Welland, M.E.: Label-free detection of amyloid growth with microcantilever sensors. Nanotechnol. 19, 384007 (2008)CrossRefGoogle Scholar
  12. 12.
    Mertens, J., Rogero, C., Calleja, M., Ramos, D., Martin-Gago, J.A., Briones, C., Tamayo, J.: Label-free detection of DNA hybridization based on hydration induced tension in nucleic acid films. Nature Nanotechnol. 3, 301–307 (2008)CrossRefGoogle Scholar
  13. 13.
    Ansari, M.Z., Cho, C.: A study on increasing sensitivity of rectangular microcantilevers used in biosensors. Sensors 8, 7530–7544 (2008)CrossRefGoogle Scholar
  14. 14.
    Fernando, S., Austin, M., Chaffey, J.: Improved cantilever profiles for elements. J. Phys. D: Appl. Phys. 40, 7652–7655 (2007)CrossRefGoogle Scholar
  15. 15.
    Ansari, M.Z., Cho, C., Kim, J., Bang, B.: Comparison between deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers. Sensors 9, 2706–2718 (2009)CrossRefGoogle Scholar
  16. 16.
    Calleja, M., Nordstrom, M., Alvarez, M., Tamayo, J., Lechuga, L.M., Boisen, A.: Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy 105, 215–222 (2005)CrossRefGoogle Scholar
  17. 17.
    Ransley, J.H.T., Watari, M., Sukumaran, D., McKendry, R.A., Seshia, A.A.: SU8 bio-chemical microarrays. Micro. Engg. 83, 1621–1625 (2006)CrossRefGoogle Scholar
  18. 18.
    Johansson, A., Blagoi, G., Boisen, A.: Polymeric cantilever-based biosensor with integrated readout. Appl. Phys. Lett. 89, 173505 (2006)CrossRefGoogle Scholar
  19. 19.
    Fritz, J., Baller, M.K., Lang, H.P., Rothuizen, H., Vettiger, P., Meyer, E., Guntherodt, H.J., Gerber, C., Gimzewski, J.K.: Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000)CrossRefGoogle Scholar
  20. 20.
    Khaled, A.-R.A., Vafai, K.: Analysis of oscillatory flow disturbances and thermal characteristics inside fluidic cells due to fluid leakage and wall slip conditions. J. Biomech. 37, 721–729 (2004)CrossRefGoogle Scholar
  21. 21.
    Ibach, H.: Physics of Surfaces and Interfaces. Springer, Heidelberg (2006)Google Scholar
  22. 22.
    Stoney, G.G.: The tension of metallic films deposited by electrolysis. Proc. Roy. Soc. Lond. A 82, 172–175 (1909)CrossRefGoogle Scholar
  23. 23.
    Finot, B., Passian, A., Thundat, T.: Measurement of mechanical properties of cantilever shaped materials. Sensors 8, 3497–3541 (2008)CrossRefGoogle Scholar
  24. 24.
    Hsueh, A.H.: Modeling of elastic deformation of multilayers due to residual stresses and external bending. J. Appl. Phys. 91, 12 (2002)Google Scholar
  25. 25.
    Ramos, C., Mertens, J., Calleja, M., Tamayo, J.: Study of the origin of bending induced by bimetallic effect on microcantilever. Sensors 7, 1757–1765 (2007)CrossRefGoogle Scholar
  26. 26.
    Feng, R., Farris, R.J.: Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings. J. Micromech. Microeng. 13, 80–88 (2003)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Yi, J.W., Shih, W.Y., Shih, W.H.: Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J. Appl. Phys. 91, 1680–1686 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mohd. Zahid Ansari
    • 1
  • Chongdu Cho
    • 1
  1. 1.Department of Mechanical EngineeringInha UniversityNam-KuRepublic of Korea

Personalised recommendations