Advertisement

Modeling of the SET and RESET Process in Bipolar Resistive Oxide-Based Memory Using Monte Carlo Simulations

  • Alexander Makarov
  • Viktor Sverdlov
  • Siegfried Selberherr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6046)

Abstract

A stochastic model of the resistive switching mechanism in bipolar oxide-based resistive random access memory (RRAM) is presented. The distribution of electron occupation probabilities obtained is in agreement with previous work. In particular, a low occupation region is formed near the cathode. Our simulations of the temperature dependence of the electron occupation probability near the anode and the cathode demonstrate a high robustness of the low occupation region. The RESET process in RRAM simulated with our stochastic model is in good agreement with experimental results.

Keywords

stochastic model resistive switching RRAM Monte Carlo method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kryder, M.H., Kim, C.S.: After Hard Drives - What Comes Next? IEEE Trans. on Mag. 45(10), 3406–3413 (2009)CrossRefGoogle Scholar
  2. 2.
    Kugeler, C., Nauenheim, C., Meier, M., et al.: Fast Resistance Switching of TiO2 and MSQ Thin Films for Non-Volatile Memory Applications (RRAM). In: NVM Tech. Symp., p. 6 (2008)Google Scholar
  3. 3.
    Chen, Y.S., Wu, T.Y., Tzeng, P.J.: Forming-free HfO2 Bipolar RRAM Device with Improved Endurance and High Speed Operation. In: Symp. on VLSI Tech., pp. 37–38 (2009)Google Scholar
  4. 4.
    Dong, R., Lee, D.S., Xiang, W.F., et al.: Reproducible Hysteresis and Resistive Switching in Metal-CuxO-Metal Heterostructures. APL 90(4), 42107/1-3 (2007)Google Scholar
  5. 5.
    Lin, C.C., Lin, C.Y., Lin, M.H.: Voltage-Polarity-Independent and High-Speed Resistive Switching Properties of V-Doped SrZrO3 Thin Films. IEEE Trans. on Electron Dev. 54(12), 3146–3151 (2007)CrossRefGoogle Scholar
  6. 6.
    Fujii, T., Kawasaki, M., Sawa, A., et al.: Hysteretic CurrentVoltage Characteristics and Resistance Switching at an Epitaxial Oxide Schottky Junction SrRuO3/SrTi0.99Nb0.01O3. APL 86(1), art. no. 012107 (2005)Google Scholar
  7. 7.
    Nian, Y.B., Strozier, J., Wu, N.J., et al.: Evidence for an Oxygen Diffusion Model for the Electric Pulse Induced Resistance Change Effect in Transition-Metal Oxides. PRL 98(14), 146403/1-4 (2007)Google Scholar
  8. 8.
    Wu, S.X., Xu, L.M., Xing, X.J.: Reverse-Bias-Induced Bipolar Resistance Switching in Pt/TiO2/SrTi0.99Nb0.01O3/Pt Devices. APL 93(4), 043502/1-3 (2008)Google Scholar
  9. 9.
    Szot, K., Speier, W., Bihlmayer, G., Waser, R.: Switching the Electrical Resistance of Individual Dislocations in Single-Crystalline SrTiO3. Nature Materials 5, 312–320 (2006)CrossRefGoogle Scholar
  10. 10.
    Nishi, Y., Jameson, J.R.: Recent Progress in Resistance Change Memory. In: Dev. Res. Conf., pp. 271–274 (2008)Google Scholar
  11. 11.
    Xu, N., Gao, B., Liu, L.F., et al.: A Unified Physical Model of Switching Behavior in Oxide-Based RRAM. In: Symp. on VLSI Tech., pp. 100–101 (2008)Google Scholar
  12. 12.
    Gao, B., Sun, B., Zhang, H., et al.: Unified Physical Model of Bipolar Oxide-Based Resistive Switching Memory. IEEE Electron Dev. Let. 30(12), 1326–1328 (2009)CrossRefGoogle Scholar
  13. 13.
    Rozenberg, M.J., Inoue, I.H., Sanchez, M.J.: Nonvolatile Memory with Multilevel Switching: A Basic Model. PRL 92(17), 178302-1 (2004)Google Scholar
  14. 14.
    Kinoshita, K., Tamura, T., Aso, H., et al.: New Model Proposed for Switching Mechanism of ReRAM. In: IEEE Non-Volatile Semicond. Memory Workshop 2006, pp. 84–85 (2006)Google Scholar
  15. 15.
    Russo, U., Ielmini, D., Cagli, C., et al.: Conductive-Filament Switching Analysis and Self-Accelerated Thermal Dissolution Model for Reset in NiO-Based RRAM. In: IEDM Tech. Dig., pp.775–778 (2007)Google Scholar
  16. 16.
    Sverdlov, V., Korotkov, A.N., Likharev, K.K.: Shot-Noise Suppression at Two-Dimensional Hopping. PRB 63, 081302 (2001)CrossRefGoogle Scholar
  17. 17.
    Derrida, B.: An Exactly Soluble Non-Equilibrium System: The Asymmetric Simple Exclusion Process. Phys. Rep. 301(1-3), 65–83 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexander Makarov
    • 1
  • Viktor Sverdlov
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations