Skip to main content

Advanced Monte Carlo Techniques in the Simulation of CMOS Devices and Circuits

  • Conference paper
Book cover Numerical Methods and Applications (NMA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6046))

Included in the following conference series:

Introduction

The years of happy scaling are over and the fundamental challenges that the semiconductor industry faces at technology and device level will deeply affect the design of the next generations of integrated circuits and systems. The progressive scaling of CMOS transistors to achieve faster devices and higher circuit density has fuelled the phenomenal success of the semiconductor industry captured by Moores famous law [1]. Silicon technology has entered the nano CMOS era with 35nm MOSFETs in mass production in the 45nm technology generation. However, it is widely recognised that the increasing variability in the device characteristics is among the major challenges to scaling and integration for the present and next generation of nano CMOS transistors and circuits. Variability of transistor characteristics has become a major concern associated with CMOS transistors scaling and integration [2], [3]. It already critically affects SRAM scaling [4], and introduces leakage and timing issues in digital logic circuits [5]. The variability is the main factor restricting the scaling of the supply voltage, which for the last four technology generations has remained virtually constant, adding to the looming power crisis.

In this paper we describe advanced Monte Carlo simulation techniques that are used to study statistical variability in contemporary and future CMOS technology generations at the levels of physical transistor simulation, compact model and circuit simulation. First we review the major sources of statistical variability in nano CMOS transistors focusing at the 45nm technology generation and beyond and introduce the advanced 3D statistical physical statistical simulation technology and tools used to forecasts the magnitude of statistical variability. Statistical compact models used to transfer the variability information obtained from the physical simulations into the circuit simulation and design domain are discussed next. Sensitivity analysis allows the selection of optimal statistical compact model sets of parameters. The use of statistical compact models is illustrated in the simulation of SRAM cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore, G.E.: Progress in Digital Electronics. In: Technical Digest of the Int’l Electron Devices Meeting, p. 13. IEEE Press, Los Alamitos (1975)

    Google Scholar 

  2. Bernstein, K., Frank, D.J., Gattiker, A.E., Haensch, W., Ji, B.L., Nassif, S.R., Nowak, E.J., Pearson, D.J., Rohrer, N.J.: IBM J. Research and Development 50, 433 (2006)

    Google Scholar 

  3. Brown, A.R., Roy, G., Asenov, A.: Poly-Si gate related variability in decananometre MOSFETs with conventional architecture. IEEE Trans. Electron Devices 54, 3056 (2007)

    Article  Google Scholar 

  4. Cheng, B.-J., Roy, S., Asenov, A.: The impact of random dopant effects on SRAM cells. In: Proc. 30th European Solid-State Circuits Conference (ESSCIRC), Leuven, p. 219 (2004)

    Google Scholar 

  5. Agarwal, A., Chopra, K., Zolotov, V., Blaauw, D.: Circuit optimization using statistical static timing analysis. In: Proc. 42nd Design Automation Conference, Anaheim, p. 321 (2005)

    Google Scholar 

  6. Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub 0.1 micron MOSFETs: A 3D atomistic simulation study. IEEE Trans. Electron Dev. 45, 2505 (1998)

    Article  Google Scholar 

  7. Asenov, A., Kaya, S., Brown, A.R.: Intrinsic Parameter Fluctuations in Decananometre MOSFETs Introduced by Gate Line Edge Roughness. IEEE Trans. Electron Dev. 50, 1254 (2003)

    Article  Google Scholar 

  8. Brown, A.R., Roy, G., Asenov, A.: Poly-Si gate related variability in decananometre MOSFETs with conventional architecture. IEEE Trans. Electron Devices 54, 3056 (2007)

    Article  Google Scholar 

  9. Watling, J.R., Brown, A.R., Ferrari, G., Babiker, J.R., Bersuker, G., Zeitzoff, P., Asenov, A.: Impact of High-k on transport and variability in nano-CMOS devices. J. Computational and Theoretical Nanoscience 5(6), 1072 (2008)

    Article  Google Scholar 

  10. Asenov, A., Kaya, S., Davies, J.H.: Intrinsic Threshold Voltage Fluctuations in Decanano MOSFETs due to Local Oxide Thickness Variations. IEEE Trans. Electron Dev. 49, 112 (2002)

    Article  Google Scholar 

  11. Brown, A.R., Watling, J.R., Asenov, A.: A 3-D Atomistic Study of Archetypal Double Gate MOSFET Structures. J. Computational Electronics 1, 165 (2002)

    Article  Google Scholar 

  12. Roy, G., Brown, A.R., Adamu-Lema, F., Roy, S., Asenov, A.: Simulation Study of Individual and Combined Sources of Intrinsic Parameter Fluctuations in Conventional Nano-MOSFETs. IEEE Trans. Electron Dev. 52, 3063–3070 (2006)

    Article  Google Scholar 

  13. Taiault, J., Foucher, J., Tortai, J.H., Jubert, O., Landis, S., Pauliac, S.: Line edge roughness characterization with three-dimensional atomic force microscope: Transfer during gate patterning process. J. Vac. Sci. Technol. B 23, 3070 (2005)

    Google Scholar 

  14. Inaba, S., Okano, K., Matsuda, S., Fujiwara, M., Hokazono, A., Adachi, K., Ohuchi, K., Suto, H., Fukui, H., Shimizu, T., Mori, S., Oguma, H., Murakoshi, A., Itani, T., Iinuma, T., Kudo, T., Shibata, H., Taniguchi, S., Takayanagi, M., Azuma, A., Oyamatsu, H., Suguro, K., Katsumata, Y., Toyoshima, Y., Ishiuchi, H.: High performance 35nm gate length CMOS with NO oxynitride gate dielectric and Ni salicide. IEEE Trans. Electron Dev. 49, 2263 (2002)

    Article  Google Scholar 

  15. International Roadmap for Semiconductors (ITRS), Semiconductor Industry Association, http://www.itrs.net

  16. Lin, C.-H., Dunga, M.V., Lu, D., Niknejad, A.M., Hu, C.: Statistical Compact Modeling of Variations in Nano MOSFETs VLSI-TSA 2008, p. 165 (2008)

    Google Scholar 

  17. Power, J.A., Donellan, B., Mathewson, A., Lane, W.A.: Relating statistical MOSFET model parameter variabilities to ICmanufacturing process fluctuations enabling realistic worst case design. IEEE Trans. Semicond. Manufact. 7, 306 (1994)

    Article  Google Scholar 

  18. McAndrew, C.C.: Efficient statistical modeling for circuit simulation Design of Systems on a Chip: Devices and Components. In: Reis, R., Jess, J. (eds.), p. 97. Kluwer Academic, Dordrecht (2004)

    Google Scholar 

  19. Takeuchi, K., Hane, M.: Statistical Compact Model Parameter Extraction by Direct Fitting to. IEEE Trans. Electron Devices 55, 1487 (2008)

    Article  Google Scholar 

  20. BSIM4 manual, http://www-device.eecs.berkeley.edu/

  21. Cheng, B., Roy, S., Roy, G., Adamu-Lema, F., Asenov, A.: Impact of intrinsic parameter fluctuations in decanano MOSFETs on yield and functionality of SRAM cells. Solid-State Electron. 49, 740 (2005)

    Article  Google Scholar 

  22. Cheng, B., Roy, S., Asenov, A.: Low power, high density CMOS 6-T SRAM cell design subject to atomistic fluctuations. In: Proc. ULIS 2006, Grenoble, pp. 33–36 (2006) ISBN: 88-900874-0-8

    Google Scholar 

  23. Cheng, B., Roy, S., Asenov, A.: CMOS 6-T SRAM cell design subject to atomistic fluctuations. Solid-State Electronics 51, 565 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asenov, A. (2011). Advanced Monte Carlo Techniques in the Simulation of CMOS Devices and Circuits. In: Dimov, I., Dimova, S., Kolkovska, N. (eds) Numerical Methods and Applications. NMA 2010. Lecture Notes in Computer Science, vol 6046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18466-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18466-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18465-9

  • Online ISBN: 978-3-642-18466-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics