Skip to main content

Energy-Sensitive Single-Photon X-ray and Particle Imaging

  • Chapter
  • First Online:
Single-Photon Imaging

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 160))

  • 2914 Accesses

Abstract

Energy-sensitive detectors perform asynchronous arrival detection of single X-Ray photons and particles. Their ability of measuring the detected particles’ energy improves the performance of the particle counting applications and enables spectroscopic applications. In such detectors, either a semiconductor layer for direct conversion or a combination of a scintillator and a semiconductor sensing device for visible photons is used for generation of an electrical charge pulse per absorbed particle. This charge amount, which represents the particle energy, is detected by an asynchronous charge pulse detecting circuit. The noise of such circuits defines the lowest discrimination threshold of counting systems and the energy resolution of spectroscopic applications. Therefore, low noise, low power consumption, and low area are requirements for charge pulse detecting circuits used in segmented energy sensitive particle detectors with a high number of pixels. Choice of a sensing device, definition of the charge pulse detecting circuit’s topology, and analysis of interdependences amongst the above performance parameters are covered and a context with employed readout schemes, processing circuits, and target applications is established in this chapter. Energy-sensitive detectors perform asynchronous arrival detection of single X-Ray photons and particles. Their ability of measuring the detected particles’ energy improves the performance of the particle counting applications and enables spectroscopic applications. In such detectors, either a semiconductor layer for direct conversion or a combination of a scintillator and a semiconductor sensing device for visible photons is used for generation of an electrical charge pulse per absorbed particle. This charge amount, which represents the particle energy, is detected by an asynchronous charge pulse detecting circuit. The noise of such circuits defines the lowest discrimination threshold of counting systems and the energy resolution of spectroscopic applications. Therefore, low noise, low power consumption, and low area are requirements for charge pulse detecting circuits used in segmented energy sensitive particle detectors with a high number of pixels. Choice of a sensing device, definition of the charge pulse detecting circuit’s topology, and analysis of interdependences amongst the above performance parameters are covered and a context with employed readout schemes, processing circuits and target applications is established in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “pile-up” denotes accumulation of signal information of consecutive particle detections.

  2. 2.

    Note that, the top electrode of MOS devices is made from polycrystalline silicon in most manufacturing processes.

  3. 3.

    Buried photodiodes are also referred to as pinned photodiodes.

  4. 4.

    Amplifier noise is also referred to as series noise in literature.

  5. 5.

    Feedback resistor noise and sensing device leakage current shot noise are also referred to as parallel noise in literature.

  6. 6.

    Poisson noise is also referred to as shot noise.

  7. 7.

    In literature the DC shift of the output signal is also referred to as baseline shift.

  8. 8.

    n is also referred to as the shaper order.

  9. 9.

    A ballistic deficit may even be observed on the CSA output if the spacing between the nondominant and dominant poles is poor or if the response time of the sensing device is longer than the reset time constant.

References

  1. L.S. Birks, E.J. Brooks, H. Friedman, Anal. Chem. 25(5), 692 (1953)

    Article  Google Scholar 

  2. B. Mikulec, M. Campbell, E. Heijne, X. Llopart, L. Tlustos, Nucl. Instr. Meth. A 511, 282 (2003)

    Article  ADS  Google Scholar 

  3. M. Chmeissani, C. Frojdh, O. Gal, X. Llopart, J. Ludwig, M. Maiorino, E. Manach, G. Mettivier, M.C. Montesi, C. Ponchut, P. Russo, L. Tlustos, A. Zwerger, IEEE Trans. Nucl. Sci. 51, 2379 (2004)

    Article  ADS  Google Scholar 

  4. B. Büttgen, T. Oggier, R. Kaufmann, P. Seitz, N. Blanc, Proc. SPIE 5302, 9 (2004)

    Article  ADS  Google Scholar 

  5. J. Ohta, Smart CMOS Image Sensors and Applications (CRC Press, Boca Raton, London, New York, 2008), pp. 40–42

    Google Scholar 

  6. X. Llopart, M. Campbell, R. Dinapoli, D. San Segundo, E. Pernigotti, IEEE Trans. Nucl. Sci. 49, 2279 (2002)

    Article  ADS  Google Scholar 

  7. G. Gramegna, P. O’Connor, P. Rehak, S. Hart, IEEE Trans. Nucl. Sci. 44, 385 (1997)

    Article  ADS  Google Scholar 

  8. A. Nardulli, in IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008, p. 2731

    Google Scholar 

  9. C. Kapnistis, K. Misiakos, N. Haralabidis, in Proceedings of the 6th IEEE International Conference on Electronics, Circuits and Systems, vol. 3, 5–8 September 1999, p. 1368

    Google Scholar 

  10. T. Noulis, S. Sikos, G. Sarrabayrouse, L. Bary, IEEE Trans. Circuits Syst. I, Reg. Papers 55, 1854 (2008)

    Article  Google Scholar 

  11. E. Beuville, K. Borer, E. Chesi, E.H.M. Heijne, P. Jarron, B. Lisowski, S. Singh, Nucl. Instr. Meth. A 288, 157 (1990)

    Article  ADS  Google Scholar 

  12. Z.Y. Chang, W.M.C. Sansen, Nucl. Instr. Meth. A 305, 553 (1991)

    Article  ADS  Google Scholar 

  13. F. Krummenacher, Nucl. Instr. Meth. A 305, 527 (1991)

    Article  ADS  Google Scholar 

  14. B. Krieger, K. Ewell, B.A. Ludewigt, M.R. Maier, D. Markovic, O. Milgrome, Y.J. Wang, IEEE Trans. Nucl. Sci. 48, 493 (2001)

    Article  ADS  Google Scholar 

  15. B. Krieger, I. Kipnis, B.A. Ludewigt, IEEE Trans. Nucl. Sci. 45, 732 (1998)

    Article  ADS  Google Scholar 

  16. C. Foirini, M. Porro, IEEE Trans. Nucl. Sci. 51, 1953 (2004)

    Article  ADS  Google Scholar 

  17. R. Dlugosz, in Proceedings of the 15thInternational Conference on Mixed Design of Integrated Circuits and Systems, Poznań, Poland, 19–21 June 2008, p. 627

    Google Scholar 

  18. C.H. Nowlin, J.L. Blankenship, Rev. Sci. Instrum. 36, 1830 (1965)

    Article  ADS  Google Scholar 

  19. P. Gryboś, R. Szczygiel, IEEE Trans. Nucl. Sci. 55, 583 (2008)

    Article  ADS  Google Scholar 

  20. R. Szczygiel, P. Gryboś, P. Maj, A. Tsukiyama, K. Matsushita, T. Taguchi, IEEE Trans. Nucl. Sci. 56, 487 (2009)

    Article  ADS  Google Scholar 

  21. L.T. Wurtz, W.P. Wheless Jr., IEEE Trans. Instrum. Meas. 42, 942 (1993)

    Article  ADS  Google Scholar 

  22. P. Gryboś, M. Idzik, A. Skoczeń, Analog Integr. Circuits Signal Process 49, 107 (2006)

    Article  Google Scholar 

  23. W.M.C. Sansen, Z.Y. Chang, IEEE Trans. Circuits Syst. 37, 1375 (1990)

    Article  Google Scholar 

  24. C. Lotto, P. Seitz, in Proceecings of 2009 International Image Sensor Workshop, Bergen, Norway, 26–28 June 2009

    Google Scholar 

  25. C. Lotto, P. Seitz, in Proceedings of EOS Conference on Frontiers in Electronic Imaging, Munich, Germany, 15–17 June 2009

    Google Scholar 

  26. X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, W. Wong, Nucl. Instr. Meth. A 581, 485 (2007)

    Article  ADS  Google Scholar 

  27. R. Bellazzini, G. Spandre, M. Minuti, L. Baldini, A. Brez, F. Cavalca, L. Latronico, N. Omodei, M.M. Massai, C. Sgro, E. Costa, P. Soffitta, F. Krummenacher, R. de Oliveira, Nucl. Instr. Meth. A 566, 552 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lotto, C. (2011). Energy-Sensitive Single-Photon X-ray and Particle Imaging. In: Seitz, P., Theuwissen, A. (eds) Single-Photon Imaging. Springer Series in Optical Sciences, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18443-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18443-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18442-0

  • Online ISBN: 978-3-642-18443-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics