Abstract
We introduced a real time Image Processing technique using modern programmable Graphic Processing Units (GPU) in this paper. GPU is a SIMD (Single Instruction, Multiple Data) device that is inherently data-parallel. By utilizing NVIDIA’s new GPU Programming framework, “Compute Unified Device Architecture” (CUDA) as a computational resource, we realize significant acceleration in the computations of different Image processing Algorithms. Here we present an efficient implementation of algorithms on the NVIDIA GPU. Specifically, we demonstrate the efficiency of our approach by a parallelization and optimization of the algorithm. In result we show time comparison between CPU and GPU implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
NVIDIA, CUDA Programming Guide Version 2.3. NVIDIA Corporation: Santa Clara, California Intel, Quad-Core Intel® Xeon® Processor 5400 Series 2008, Intel Corporation: Santa Clara, California (2008), http://gpgpu.org , General-Purpose Computation on Graphics Hardware
Allard, J., Raffin, B.: A shader-based parallel rendering framework. In: Visualization, 2005, VIS 2005, pp. 127–134. IEEE, Los Alamitos (2005)
Neve, D., et al.: GPU-assisted decoding of video samples represented in the YCoCg-R color space. In: Proc. ACM Int. Conf. on Multimedia (2005)
Sinha, S.N., Frahm, J.-M., Pollefeys, M., Genc, Y.: Feature tracking and matching in video using programmable graphics hardware. In: Machine Vision and Applications, MVA (2007)
Burt, P.J., Andelson, E.H.: A multiresolution blend with application to image mosaics. ACM transactions on Graphics 2(4) (1983)
Adelson, E.H., Anderson, C.H., Bergen, J.R.: Pyramid methods in image processing (1984)
Park, S.I., Ponce, S.P., Huang, J., Cao, Y., Quek, F.: Low-Cost, High-Speed Computer Vision Using NVIDIA’s CUDA Architecture
Yang, Z., Zhu, Y., Pu, Y.: Parallel Image Processing Based on CUDA 978-0-7695-3336-0/08 © 2008. IEEE, Los Alamitos (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Daga, B., Bhute, A., Ghatol, A. (2011). Implementation of Parallel Image Processing Using NVIDIA GPU Framework. In: Unnikrishnan, S., Surve, S., Bhoir, D. (eds) Advances in Computing, Communication and Control. ICAC3 2011. Communications in Computer and Information Science, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18440-6_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-18440-6_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18439-0
Online ISBN: 978-3-642-18440-6
eBook Packages: Computer ScienceComputer Science (R0)