Skip to main content

Implementation of Parallel Image Processing Using NVIDIA GPU Framework

  • Conference paper
Advances in Computing, Communication and Control (ICAC3 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 125))

Abstract

We introduced a real time Image Processing technique using modern programmable Graphic Processing Units (GPU) in this paper. GPU is a SIMD (Single Instruction, Multiple Data) device that is inherently data-parallel. By utilizing NVIDIA’s new GPU Programming framework, “Compute Unified Device Architecture” (CUDA) as a computational resource, we realize significant acceleration in the computations of different Image processing Algorithms. Here we present an efficient implementation of algorithms on the NVIDIA GPU. Specifically, we demonstrate the efficiency of our approach by a parallelization and optimization of the algorithm. In result we show time comparison between CPU and GPU implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. NVIDIA, CUDA Programming Guide Version 2.3. NVIDIA Corporation: Santa Clara, California Intel, Quad-Core Intel® Xeon® Processor 5400 Series 2008, Intel Corporation: Santa Clara, California (2008), http://gpgpu.org , General-Purpose Computation on Graphics Hardware

  2. Allard, J., Raffin, B.: A shader-based parallel rendering framework. In: Visualization, 2005, VIS 2005, pp. 127–134. IEEE, Los Alamitos (2005)

    Google Scholar 

  3. Neve, D., et al.: GPU-assisted decoding of video samples represented in the YCoCg-R color space. In: Proc. ACM Int. Conf. on Multimedia (2005)

    Google Scholar 

  4. Sinha, S.N., Frahm, J.-M., Pollefeys, M., Genc, Y.: Feature tracking and matching in video using programmable graphics hardware. In: Machine Vision and Applications, MVA (2007)

    Google Scholar 

  5. Burt, P.J., Andelson, E.H.: A multiresolution blend with application to image mosaics. ACM transactions on Graphics 2(4) (1983)

    Google Scholar 

  6. Adelson, E.H., Anderson, C.H., Bergen, J.R.: Pyramid methods in image processing (1984)

    Google Scholar 

  7. Park, S.I., Ponce, S.P., Huang, J., Cao, Y., Quek, F.: Low-Cost, High-Speed Computer Vision Using NVIDIA’s CUDA Architecture

    Google Scholar 

  8. Yang, Z., Zhu, Y., Pu, Y.: Parallel Image Processing Based on CUDA 978-0-7695-3336-0/08 © 2008. IEEE, Los Alamitos (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daga, B., Bhute, A., Ghatol, A. (2011). Implementation of Parallel Image Processing Using NVIDIA GPU Framework. In: Unnikrishnan, S., Surve, S., Bhoir, D. (eds) Advances in Computing, Communication and Control. ICAC3 2011. Communications in Computer and Information Science, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18440-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18440-6_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18439-0

  • Online ISBN: 978-3-642-18440-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics