Localization of 3D Anatomical Structures Using Random Forests and Discrete Optimization

  • René Donner
  • Erich Birngruber
  • Helmut Steiner
  • Horst Bischof
  • Georg Langs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6533)


In this paper we propose a method for the automatic localization of complex anatomical structures using interest points derived from Random Forests and matching based on discrete optimization. During training landmarks are annotated in a set of example volumes. A sparse elastic model encodes the geometric constraints of the landmarks. A Random Forest classifier learns the local appearance around the landmarks based on Haar-like 3D descriptors. During search we classify all voxels in the query volume. This yields probabilities for each voxel that indicate its correspondence with the landmarks. Mean-shift clustering obtains a subset of 3D interest points at the locations with the highest similarity in a local neighboorhood. We encode these points together with the conformity of the connecting edges to the learnt geometric model in a Markov Random Field. By solving the discrete optimization problem the most probable locations for each model landmark are found in the query volume. On a set of 8 hand CTs we show that this approach is able to consistently localize the model landmarks (finger tips, joints, etc) despite the complex and repetitive structure of the object.


Random Forest Interest Point Markov Random Field Discrete Optimization Active Appearance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergtholdt, M., Kappes, J., Schmidt, S., Schnörr, C.: A study of parts-based object class detection using complete graphs. Int. J. Comput. Vis. 87(1-2), 93–117 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proc. ICCV, pp. 105–112 (2001)Google Scholar
  3. 3.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE TPAMI 17(8), 790–799 (1995)CrossRefGoogle Scholar
  4. 4.
    Comaniciu, D., Meer, P., Member, S.: Mean shift: a robust approach toward feature space analysis. IEEE TPAMI 24, 603–619 (2002)CrossRefGoogle Scholar
  5. 5.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. PAMI 23(6), 681–685 (2001)CrossRefGoogle Scholar
  6. 6.
    Criminisi, A., Shotton, J., Bucciarelli, S.: Decision forests with long-range spatial context for organ localization in ct volumes. In: Proc. of MICCAI Workshop on Probabilistic Models for Medical Image Analysis (MICCAI-PMMIA) (2009)Google Scholar
  7. 7.
    Donner, R., Mičušik, B., Langs, G., Bischof, H.: Generalized Sparse MRF Appearance Models (2010)Google Scholar
  8. 8.
    Donner, R., Wildenauer, H., Bischof, H., Langs, G.: Weakly supervised group-wise model learning based on discrete optimization. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 860–868. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Essafi, S., Langs, G., Paragios, N.: Left ventricle segmentation using diffusion wavelets and boosting. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 919–926. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal on Computer Vision 1, 321–331 (1988)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event detection using volumetric features. In: Proc. ICCV (2005)Google Scholar
  12. 12.
    Langs, G., Peloschek, P., Donner, R., Reiter, M., Bischof, H.: Active Feature Models. In: Proc. ICPR, pp. 417–420 (2006)Google Scholar
  13. 13.
    Paragios, N., Deriche, R.: Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE PAMI 22(3) (2000)Google Scholar
  14. 14.
    Seifert, S., Barbu, A., Zhou, S.K., Liu, D., Feulner, J., Huber, M., Suehling, M., Cavallaro, A., Comaniciu, D.: Hierarchical parsing and semantic navigation of full body CT data (2009)Google Scholar
  15. 15.
    Statistics, L.B., Breiman, L.: Random forests. In: Machine Learning, pp. 5–32 (2001)Google Scholar
  16. 16.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features, pp. 511–518 (2001)Google Scholar
  17. 17.
    Zhan, Y., Zhou, X.S., Peng, Z., Krishnan, A.: Active scheduling of organ detection and segmentation in whole-body medical images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 313–321. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Zheng, Y., Georgescu, B., Ling, H., Zhou, S., Scheuering, M., Comaniciu, D.: Constrained marginal space learning for efficient 3d anatomical structure detection in medical images, pp. 194–201 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • René Donner
    • 1
    • 2
  • Erich Birngruber
    • 1
  • Helmut Steiner
    • 1
  • Horst Bischof
    • 2
  • Georg Langs
    • 3
  1. 1.Computational Image Analysis and Radiology Lab, Department of RadiologyMedical University of ViennaAustria
  2. 2.Institute for Computer Graphics and VisionGraz University of TechnologyAustria
  3. 3.Computer Science and Artificial Intelligence LabMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations