Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6533))

Included in the following conference series:

Abstract

In this paper we discuss the impact of using algorithms for dictionary learning to build adaptive and sparse representations of medical images. The effectiveness of coding data as sparse linear combinations of the elements of an over-complete dictionary is well assessed in the medical context. Confirming what has been observed for natural images, we show the benefits of using adaptive dictionaries, directly learned from a set of training images, that better capture the distribution of the data. The experiments focus on the specific task of image denoising and produce clear evidence of the benefits obtained with the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing [see also IEEE Transactions on Acoustics, Speech, and Signal Processing] 54(11), 4311–4322 (2006), http://dx.doi.org/10.1109/TSP.2006.881199

    Google Scholar 

  2. Alush, A., Greenspan, H., Goldberger, J.: Automated and interactive lesion detection and segmentation in uterine cervix images. IEEE Trans Medical Imaging 29(2) (February 2010)

    Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  4. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York (2010)

    Google Scholar 

  5. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing 15, 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  6. Elad, M., Figueiredo, M., Ma, Y.: On the role of sparse and redundant representations in image processing. Proceedings of the IEEE 98(6), 972–982 (2010)

    Article  Google Scholar 

  7. Engan, K., Aase, S.O., Hakon Husoy, J.: Method of optimal directions for frame design. In: ICASSP 1999: Proceedings of IEEE International Conference on the Acoustics, Speech, and Signal Processing, pp. 2443–2446. IEEE Computer Society, Washington (1999)

    Google Scholar 

  8. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Pearson Education, Inc., London (2008)

    Google Scholar 

  9. Kavukcuoglu, K., Ranzato, M., LeCun, Y.: Fast inference in sparse coding algorithms with applications to object recognition. Tech. rep., Computational and Biological Learning Lab., Courant Institute, NYU (2008)

    Google Scholar 

  10. Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems 19, NIPS 2006 (2006)

    Google Scholar 

  11. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research 11, 19–60 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. In: Advances in Neural Information Processing Systems 22, NIPS 2009 (2009)

    Google Scholar 

  13. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, New York (2009)

    MATH  Google Scholar 

  14. Olshausen, B., Field, D.: Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  15. Peyré, G.: Sparse modeling of textures. Journal of Mathematical Imaging and Vision 34(1), 17–31 (2009)

    Article  MathSciNet  Google Scholar 

  16. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the International Conference on Machine Learning, ICML (2007)

    Google Scholar 

  17. Ranzato, M., Boureau, Y., Chopra, S., LeCun, Y.: A unified energy-based framework for unsupervised learning. In: Proc. of the 11-th International Workshop on Artificial Intelligence and Statistics (AISTATS 2007), Puerto Rico (2007)

    Google Scholar 

  18. Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: Learning sparse dictionaries for sparse signal approximation. IEEE Trans. Signal Processing 58(3), 1553–1564 (2010)

    Article  MathSciNet  Google Scholar 

  19. Tropp, J., Gilbert, A.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Information Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramids matching using sparse coding for image classification. In: Proc. of Computer Vision and Pattern Recognition Conference, CVPR 2009 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Staglianò, A., Chiusano, G., Basso, C., Santoro, M. (2011). Learning Adaptive and Sparse Representations of Medical Images. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2010. Lecture Notes in Computer Science, vol 6533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18421-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18421-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18420-8

  • Online ISBN: 978-3-642-18421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics