Skip to main content

Fractional Smoothness and Applications in Finance

  • Chapter
Advanced Mathematical Methods for Finance

Abstract

This overview article concerns the notion of fractional smoothness of random variables of the form g(X T ), where X=(X t ) t∈[0,T] is a certain diffusion process. We review the connection to the real interpolation theory, give examples and applications of this concept. The applications in stochastic finance mainly concern the analysis of discrete-time hedging errors. We close the review by indicating some further developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here again, the boundedness assumptions on g can be weakened, and we refer to the original papers.

  2. 2.

    With T=1, we are in accordance with the quoted literature that used Hermite polynomials. Of course, we could do a rescaling to T>0 afterwards.

References

  1. R. Avikainen, On irregular functionals of SDEs and the Euler scheme. Finance Stoch. 13, 381–401 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Avikainen, On generalized bounded variation and approximation of SDEs. Preprint, Department of Mathematics and Statistics, University of Jyväskylä (2009). Available at www.math.jyu.fi/research/pspdf/383.pdf

  3. C. Bennet, R. Sharpley, Interpolation of Operators (Academic Press, San Diego, 1988)

    Google Scholar 

  4. J. Bergh, J. Lőfstrőm, Interpolation Spaces. An Introduction (Springer, Berlin, 1976)

    MATH  Google Scholar 

  5. B. Bouchard, N. Touzi, Discrete time approximation and Monte Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111, 175–206 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Friedman, Partial Differential Equations of Parabolic Type (Prentice-Hall, New York, 1964)

    MATH  Google Scholar 

  7. C. Geiss, S. Geiss, On approximation of a class of stochastic integrals and interpolation. Stoch. Stoch. Rep. 76(4), 339–362 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Geiss, S. Geiss, On an approximation problem for stochastic integrals where random time nets do not help. Stoch. Process. Appl. 116, 407–422 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Geiss, S. Geiss, E. Gobet, Generalized fractional smoothness and L p -variation of BSDEs with non-Lipschitz terminal condition. Available at ArXiv

    Google Scholar 

  10. C. Geiss, S. Geiss, E. Laukkarinen, A note on Malliavin fractional smoothness and approximation for exponential Levy processes (2011, in preparation)

    Google Scholar 

  11. S. Geiss, Quantitative approximation of certain stochastic integrals. Stoch. Stoch. Rep. 73(3–4), 241–270 (2002)

    MATH  MathSciNet  Google Scholar 

  12. S. Geiss, M. Hujo, Interpolation and approximation in L 2(γ). J. Approx. Theory 144, 213–232 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Geiss, A. Toivola, Weak convergence of error processes in discretizations of stochastic integrals and Besov spaces. Bernoulli 15(4), 925–954 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Gobet, A. Makhlouf, The tracking error rate of the Delta–Gamma hedging strategy. Mathematical Finance. Available at hal.archives-ouvertes.fr/hal-00401182/fr/

  15. E. Gobet, A. Makhlouf, L 2-time regularity of BSDEs with irregular terminal functions. Stoch. Process. Appl. 120, 1105–1132 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Gobet, R. Munos, Sensitivity analysis using Itô–Malliavin calculus and martingales. Application to stochastic control problem. SIAM J. Control Optim. 43(5), 1676–1713 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Gobet, E. Temam, Discrete time hedging errors for options with irregular pay-offs. Finance Stoch. 5(3), 357–367 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Hayashi, P. Mykland, Evaluating hedging errors: an asymptotic approach. Math. Finance 15(2), 309–343 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Hirsch, Lipschitz functions and fractional Sobolev spaces. Potential Anal. 11(4), 415–429 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Hujo, On discrete time hedging in d-dimensional option pricing models. Preprint 317, Department of Mathematics and Statistics, University of Jyväskylä (2005). Available at www.math.jyu.fi/research/pspdf/317.pdf

  21. M. Hujo, Is the approximation rate for European pay-offs in the Black–Scholes model always \(1/\sqrt{n}\)? J. Theor. Probab. 19, 190–203 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Jacod, On continuous conditional Gaussian martingales and stable convergence in law, in Séminaire de Probabilités XXXI. Lecture Notes in Mathematics, vol. 1655 (Springer, Berlin, 1997)

    Google Scholar 

  23. J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes (Springer, Berlin, 2003)

    MATH  Google Scholar 

  24. I. Karatzas, S.E. Shreve, Methods of Mathematical Finance (Springer, New York, 1998)

    MATH  Google Scholar 

  25. N. El Karoui, S.G. Peng, M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. T.G. Kurtz, P. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19(3), 1035–1070 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. J.P. Lemor, E. Gobet, X. Warin, Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli 12(5), 889–916 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. C. Martini, C. Patry, Variance optimal hedging in the Black–Scholes model for a given number of transactions (1999). Available at hal.inria.fr/docs/00/07/28/95/PDF/RR-3767.pdf

  29. D. Nualart, Malliavin Calculus and Related Topics (Springer, Berlin, 2006)

    MATH  Google Scholar 

  30. H. Rootzen, Limit distributions for the error in approximations of stochastic integrals. Ann. Probab. 8(2), 241–251 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Seppälä, Optimal approximation rate of certain stochastic integrals. J. Approx. Theory. Preprint 375, Department of Mathematics and Statistics, University of Jyväskylä (2008). Available at www.math.jyu.fi/research/pspdf/375.pdf

  32. N. Taleb, Dynamic Hedging: Managing Vanilla and Exotic Options. Wiley Finance Editions (Wiley, New York, 1997)

    Google Scholar 

  33. P. Tankov, M. Brodén, Errors from discrete hedging in exponential Lévy models: the L 2 approach. Preprint (2009)

    Google Scholar 

  34. E. Temam, Analysis of error with Malliavin calculus: application to hedging. Math. Finance 13(1), 201–214 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Watanabe, Fractional order Sobolev spaces on Wiener space. Probab. Theory Relat. Fields 95(2), 175–198 (1993)

    Article  MATH  Google Scholar 

  36. R. Zhang, Couverture approchée des options Européennes. Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées (1999). Available at cermics.enpc.fr/theses/99/zhang-ruotao.ps.gz

  37. J. Zhang, A numerical scheme for BSDEs. Ann. Appl. Probab. 14(1), 459–488 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Geiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geiss, S., Gobet, E. (2011). Fractional Smoothness and Applications in Finance. In: Di Nunno, G., Øksendal, B. (eds) Advanced Mathematical Methods for Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18412-3_12

Download citation

Publish with us

Policies and ethics