Skip to main content

Advanced GC–MS and LC–MS Tools for Structure Elucidation in Effect-Directed Analysis

  • Chapter
  • First Online:
Effect-Directed Analysis of Complex Environmental Contamination

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 15))

Abstract

An important step in effect-directed analysis (EDA) is the identification of the compound(s) causing the biological response of the bioassay. The combined use of gas chromatography (GC) and liquid chromatography (LC) with mass spectrometry (MS) is a powerful, complementary approach for identification of unknown compounds in EDA. In the last decade, MS techniques have evolved considerably with respect to high sensitivity scanning and non-target screening. These new techniques, often with high mass resolution, generate large amounts of data, making the evaluation of the data for further prioritization and selection of the peaks of interest a challenging task. The development of LC–MS strategies for structure elucidation of unknown compounds requires a major effort, as current LC–MS libraries are very limited. Comprehensive two-dimensional GC (GC × GC) coupled to low-resolution rapid-scanning MS is an established technology for the separation and identification of compounds in complex mixtures. However, to enable the empirical formula assignment of unknown compounds, it is required that GC × GC is combined with rapid-scanning accurate mass spectrometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ankley GT, Hockett JR, Mount DI, Mount DR (2011) Early evolution of the toxicity identification evaluation process: contributions from the United States environmental protection agency effluent testing program. In: Brack W (ed) Effect-directed analysis of complex environmental contamination. Springer, Heidelberg

    Google Scholar 

  2. Burgess RM, Ho KT, Biales AD, Brack W (2011) Recent developments in whole sediment toxicity identification evaluations (TIEs): innovations in manipulations and endpoints. In: Brack W (ed) Effect-directed analysis of complex environmental contamination. Springer, Heidelberg

    Google Scholar 

  3. Giera M, Irth H (2011) Simultaneous screening and chemical characterization of bioactive compounds using LC-MS based technologies (affinity chromatography). In: Brack W (ed) Effect-directed analysis of complex environmental contamination. Springer, Heidelberg

    Google Scholar 

  4. Borman S et al (1998) Chemistry crystallizes into modern science. Chem Eng News 12:39–75

    Article  Google Scholar 

  5. Dempster AJ (1918) A new method of positive ray analysis. Phys Rev 11(4):316–325

    Article  CAS  Google Scholar 

  6. Aston FW (1919) A simple form of apparatus for estimating the oxygen content of air from the upper atmosphere. J Chem Soc Trans 115:472–475

    Article  CAS  Google Scholar 

  7. Faull KF et al (2008) An introduction to the basic principles and concepts of mass spectrometry. In: Whitelegge JP (ed) Comprehensive analytical chemistry. Elsevier, Amsterdam, pp 1–46

    Google Scholar 

  8. Gross B et al (2004) Occurrence and fate of pharmaceuticals and alkylphenol ethoxylate metabolites in an effluent-dominated river and wetland. Environ Toxicol Chem 23(9):2074–2083

    Article  CAS  Google Scholar 

  9. Paul W, Steinwedel H (1960) Apparatus for separating charged particles of different specific charges. US Patent 2,939,952 (A) 1960

    Google Scholar 

  10. Dawson PH (1976) Quadrupole mass spectrometry and its applications. Elsevier, Amsterdam

    Google Scholar 

  11. Paul W (1990) Electromagnetic traps for charged and neutral particles. Rev Mod Phys 62(3):531

    Article  CAS  Google Scholar 

  12. Paul W, Steinwede H (1956) Verfahren zur Trennung bzw. zum getrennten Nachweis von Ionen verschiedener spezifischer Ladung. German Patent DE944900, 1956

    Google Scholar 

  13. Hess P, De Boer J, Cofino WP, Leonards PEG, Wells DE (1995) Critical-review of the analysis of non-ortho chlorobiphenyls and mono-ortho chlorobiphneyls. J Chromatogr 703(1–2):417–465

    Article  CAS  Google Scholar 

  14. Leonards PEG, Brinkman UATh, Cofino WP (1996) The use of gas chromatography with ion trap mass spectrometry for the determination of planse PCBs in biota and sediment. Chemosphere 32(12):2381–2387

    Article  CAS  Google Scholar 

  15. Schwartz JC, Senko MW, Syka JEP (2002) A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 13(6):659–669

    Article  CAS  Google Scholar 

  16. Stephens W (1946) A pulsed mass spectrometer with time dispersion. Phys Rev 69(11–12):674

    Google Scholar 

  17. Mamyrin BA, Karataev VI, Shmikk DV (1978) Time-of-flight mass spectrometer. US Patent 4,072,862 (A) 1978

    Google Scholar 

  18. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17(1):1–35

    Article  CAS  Google Scholar 

  19. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72(6):1156–1162

    Article  CAS  Google Scholar 

  20. Hu Q et al (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40(4):430–443

    Article  CAS  Google Scholar 

  21. Scigelova M, Makarov A (2006) Orbitrap mass analyzer – overview and applications in proteomics. Proteomics 1(Suppl 1–2):16–21

    Article  CAS  Google Scholar 

  22. Liu Z, Philips JB (1991) Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci 29:227–231

    CAS  Google Scholar 

  23. Kristenson EM, Korytar P, Danielsson C, Kallio M, Brandt M, Makela J (2003) Evaluation of modulators and electron-capture detectors for comprehensive twodimensional GC of halogenated organic compounds. J Chromatogr A 1019(1–2):65–77

    Article  CAS  Google Scholar 

  24. Luong J, Gras R, Yang G, Cortes H, Mustacich R (2008) Multidimensional gas chromatography with capillary flow technology and LTM-GC. J Sep Sci 2008(31):3385–3394

    Article  Google Scholar 

  25. Blomberg J, Schoenmakers PJ, Beens J, Tijssen R (1997) Compre-hensive two-dimensional gas chromatography (GC × GC) and its applicability to the characterization of complex (petro-chemical) mixtures. J High Res Chromatogr 20(10):539–544

    Article  CAS  Google Scholar 

  26. Schoenmakers PJ, Oomen JLMM, Blomberg J, Genuit W, van Velzen G (2000) Comparison of comprehensive two-dimensional gas chromatography and gas chromatography – mass spectrometry for the characterization of complex hy-drocarbon mixtures. J Chromatogr A 892(1–2):29–46

    Article  CAS  Google Scholar 

  27. Ventura GT, Kenig F, Reddy CM, Frysinger GS, Nelson RK, Van Mooy B, Gaines RB (2008) Analysis of unresolved complex mixtures of hydrocarbons extracted from Late Archean sediments by comprehensive two-dimensional gas chromatography (GC × GC). Org Geochem 39(7):846–867

    Article  CAS  Google Scholar 

  28. Korytar P, Parera J, Leonards PEG, de Boer J, Brinkman UAT (2005) Quadrupole mass spectrometer operating in the electron-capture negative ion mode as detector for comprehensive two-dimensional gas chromatography. J Chromatogr A 1067(1–2):255–264

    Article  CAS  Google Scholar 

  29. Dalluge J, Van Stee LLP, Xu XB, Williams J, Beens J, Vreuls RJJ, Brinkman UAT (2002) Unravelling the composition of very complex samples by comprehensive gas chromatography coupled to time-of-flight mass spectrometry – cigarette smoke. J Chromatogr A 974(1–2):169–184

    Article  CAS  Google Scholar 

  30. Skoczynska E, Korytar P, De Boer J (2008) Maximizing chromatographic information from environmental extracts by GC × GC-ToF-MS. Environ Sci Technol 42(17):6611–6618

    Article  CAS  Google Scholar 

  31. Korytar P, Leonards PEG, de Boer J, Brinkman UAT (2005) Group separation of organohalogenated compounds by means of comprehensive two-dimensional gas chromatography. J Chromatogr A 1086(1–2):29–44

    Article  CAS  Google Scholar 

  32. Schymanski E, Schulze T, Hermans J, Brack W (2011) Computer tools for structure elucidation in EDA. In: Brack W (ed) Handbook of environmental chemistry on EDA. Springer, Heidelberg

    Google Scholar 

  33. Wiley (2010) http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470606967.html

  34. Chemspider (2010) http://www.chemspider.com/

  35. De Hoogh CJ et al (2006) HPLC-DAD and Q-TOF MS techniques identify cause of Daphnia biomonitor alarms in the River Meuse. Environ Sci Technol 40(8):2678–2685

    Article  Google Scholar 

  36. Bataineh M et al (2010) HPLC/APCI-FTICR-MS as a tool for identification of partial polar mutagenic compounds in effect-directed analysis. J Am Soc Mass Spectrom. doi:10.1016

    Google Scholar 

  37. Hogenboom AC, van Leerdam JA, de Voogt P (2009) Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry. J Chromatogr A 1216(3):510–519

    Article  CAS  Google Scholar 

  38. Kegg (2010) Kegg pathway database, 2010. http://www.genome.jp/kegg/pathway.html

  39. HMDB (2010) Human Metabolome Datase, 2010. http://www.hmdb.ca/

  40. Bobeldijk I et al (2001) Screening and identification of unknown contaminants in water with liquid chromatography and quadrupole-orthogonal acceleration-time-of-flight tandem mass spectrometry. J Chromatogr A 929(1–2):63–74

    Article  CAS  Google Scholar 

  41. Kienhuis PGM, Geerdink RB (2002) A mass spectral library based on chemical ionization and collision-induced dissociation. J Chromatogr A 974:161–168

    Article  CAS  Google Scholar 

  42. Marquet P et al (2000) In-source CID mass spectral libraries for the “general unknown” screening of drugs and toxicants. Analusis 28(10):925–934

    Article  CAS  Google Scholar 

  43. Saint-Marcoux F, Lachatre G, Marquet P (2003) Evaluation of an improved general unknown screening procedure using liquid-chromatography-electrospray-mass spectrometry by comparison with gas chromatography and high-performance liquid-chromatography – diode array detection. J Am Soc Mass Spectrom 14(1):14–22

    Article  CAS  Google Scholar 

  44. Thurman EM, Ferrer I, Fernandez-Alba AR (2005) Matching unknown empirical formulas to chemical structure using LC/MS TOF accurate mass and database searching: example of unknown pesticides on tomato skins. J Chromatogr A 1067(1–2):127–134

    Article  CAS  Google Scholar 

  45. Ibanez M et al (2005) Use of quadrupole time-of-flight mass spectrometry in the elucidation of unknown compounds present in environmental water. Rapid Commun Mass Spectrom 19(2):169–178

    Article  CAS  Google Scholar 

  46. Balaam JL, Chan-Man Y, Roberts PH, Thomas KV (2009) Identification of non-regulated pollutants in North Sea produced water discharges. Environ Toxicol Chem 28:1159–1167

    Article  CAS  Google Scholar 

  47. Thomas KV, Langford K, Petersen K, Smith AJ, Tollefsen KE (2009) Effect-directed identification of naphthenic acids as important in vitro xeno-estrogens and anti-Androgens in North Sea offshore produced water discharges. Environ Sci Technol 43(21):8066–8071

    Article  CAS  Google Scholar 

  48. Thomas KV, Balaam JB, Hurst MR, Thain JE (2004) Bioanalytical and chemical characterization of offshore produced water effluents for estrogen receptor (ER) agonists. J Environ Monit 6:593–598

    Article  CAS  Google Scholar 

  49. Thomas KV, Balaam J, Hurst MR, Thain JE (2004) Identification of in vitro estrogen and androgen receptor agonists in North Sea offshore produced water discharges. Environ Toxicol Chem 23:1156–1163

    Article  CAS  Google Scholar 

  50. Boitsov S, Mjos SA, Meier S (2007) Identification of estrogen-like alkylphenols in produced water from offshore oil installations. Mar Environ Res 64:651–665

    Article  CAS  Google Scholar 

  51. Weiss JM, Hamers T, Thomas KV, van der Linden S, Leonards PEG, Lamoree MH (2009) Masking effect of anti-androgens on androgenic activity in European river sediment unveiled by effect-directed analysis. Anal Bioanal Chem 394(5):1385–1397

    Article  CAS  Google Scholar 

  52. Brenner N, Haapala M, Vuorensola K, Kostiainen R (2008) Simple coupling of gas chromatography to electrospray ionization mass spectrometry. Anal Chem 80:8334–8339

    Article  CAS  Google Scholar 

  53. Östman P, Luosujărvi L, Haapala M, Grigoras K, Ketola RA, Kotiaho T, Franssila S, Kostiaien R (2006) Gas chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry. Anal Chem 78:3027–3031

    Article  Google Scholar 

  54. Brack W, Schirmer K, Erdinger L, Hollert H (2005) Effect-directed analysis of mutagens and ethoxyresorufin-O-deethylase inducers in aquatic sediments. Environ Toxicol Chem 24(10):2445–2458

    Article  CAS  Google Scholar 

  55. Brack W, Schirmer K, Kind T, Schrader S, Schüürmann G (2002) Effect-directed fractionation and identification of cytochrome P4501A – inducing halogenated aromatic hydrocarbons in a contaminated sediment. Environ Toxicol Chem 21:2654–2662

    Article  CAS  Google Scholar 

  56. Brooks LR, Hughes TJ, Claxton LD, Austern B, Brenner R, Kremer F (1998) Bioassay-directed fractionation and chemical identification of mutagens in bioremediated soils. Environ Health Perspect 106(Suppl 6):1435–1440

    CAS  Google Scholar 

  57. Nielen MWF et al (2004) Bioassay-directed identification of estrogen residues in urine by liquid chromatography electrospray quadrupole time-of-flight mass spectrometry. Anal Chem 76(22):6600–6608

    Article  CAS  Google Scholar 

  58. Bobeldijk I et al (2002) Surface and wastewater quality monitoring: Combination of liquid chromatography with (geno)toxicity detection, diode array detection and tandem mass spectrometry for identification of pollutants. J Chromatogr A 970(1–2):167–181

    Article  CAS  Google Scholar 

  59. van Ede K et al (2008) Bioassay directed identification of natural aryl hydrocarbon-receptor agonists in marmalade. Anal Chim Acta 617(1–2):238–245

    Google Scholar 

  60. Heisterkamp I, Gandrass J, Ruck W (2004) Bioassay-directed chemical analysis utilizing LC-MS: A tool for identifying estrogenic compounds in water samples? Anal Bioanal Chem 378(3):709–715

    Article  CAS  Google Scholar 

  61. Weiss JM, Stroomberg G, de Boer R, Simon E, de Boer J, Leonards PEG, Lamoree MH (2011) Integrated identification strategy for unknown pollutants on an LTQ-Orbitrap: androgen disrupting compounds identified using effect directed analysis. Anal Bioanal Chem. Accepted for publication

    Google Scholar 

  62. Mohamed R et al (2009) Comprehensive analytical strategy for biomarker identification based on liquid chromatography coupled to mass spectrometry and new candidate confirmation tools. Anal Chem 81(18):7677–7694

    Article  CAS  Google Scholar 

  63. Gunatilaka A, Diehl P, Puzicha H (2000) The evaluation of “Dynamic Daphnia Test” after a decade of use. In: Butterworth FM, Gunatilaka A, Gonsebatt ME (eds) Biomonitors and biomarkers as indicators of environmental change. Kluwer, New York, pp 29–58

    Google Scholar 

  64. Bovee TFH et al (2004) Development of a rapid yeast estrogen bioassay, based on the expression of green fluorescent protein. Gene 325:187–200

    Article  CAS  Google Scholar 

  65. Katajamaa M, Miettinen J, Oresic M (2006) MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636

    Article  CAS  Google Scholar 

  66. Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15(3):241–248

    Article  CAS  Google Scholar 

  67. Pól J, Hyötyläinen T (2008) Comprehensive two-dimensional liquid chromatography coupled with mass spectrometry. Anal Bioanal Chem 391:21–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pim E. G. Leonards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leonards, P.E.G., Brix, R., Barceló, D., Lamoree, M. (2011). Advanced GC–MS and LC–MS Tools for Structure Elucidation in Effect-Directed Analysis. In: Brack, W. (eds) Effect-Directed Analysis of Complex Environmental Contamination. The Handbook of Environmental Chemistry(), vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18384-3_7

Download citation

Publish with us

Policies and ethics