Combining Traditional Map Labeling with Boundary Labeling

  • Michael A. Bekos
  • Michael Kaufmann
  • Dimitrios Papadopoulos
  • Antonios Symvonis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6543)

Abstract

The traditional map labeling problems are mostly \({\mathcal{NP}}\)-hard. Hence, effective heuristics and approximations have been developed in the past. Recently, efficient algorithms for the so-called boundary labeling model have been introduced which assumes that the labels are placed on the boundary of the map and connected by polygonal leaders to their corresponding sites. Internal labels have been forbidden. In this paper, we allow both. Since clearly internal labels should be preferred, we consider several maximization problems for the number of internal labels and we show that they can be obtained efficiently or in quasi-polynomial time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Yehuda, R., Rawitz, D.: Efficient algorithms for integer programs with two variables per constraint (extended abstract). Algorithmica 29(44), 595–609 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bekos, M.A., Kaufmann, M., Nöllenburg, M., Symvonis, A.: Boundary Labeling with Octilinear Leaders. Algorithmica 57(3), 436–461 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Multi-Stack Boundary Labeling Problems. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 81–92. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Polygons Labelling of Minimum Leader Length. In: Kazuo, M., Kozo, S., Jiro, T. (eds.) Proc. 5th Asia Pacific Symposium on Information Visualisation (APVIS206). CRPIT, vol. 60, pp. 15–21. ACS Inc. (2006)Google Scholar
  5. 5.
    Bekos, M.A., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps. Computational Geometry: Theory and Applications 36, 215–236 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Benkert, M., Haverkort, H., Kroll, M., Nöllenburg, M.: Algorithms for multi-criteria one-sided boundary labeling. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 243–254. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Cromley, R.G.: A spatial allocation analysis of the point annotation problem. In: Proc. 2nd International Symposium on Spatial Data Handling (SDH 1986), pp. 38–49 (1986)Google Scholar
  8. 8.
    Edelsbrunner, H.: Dynamic data structures for orthogonal intersection queries. Tech. Rep. F59, Tech. Univ. Graz, Institute für Informationsverarbeitung (1980)Google Scholar
  9. 9.
    Formann, M., Wagner, F.: A packing problem with applications to lettering of maps. In: Proc. 7th Annual ACM Symposium on Computational Geometry, pp. 281–288 (1991)Google Scholar
  10. 10.
    Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal Packing and Covering in the Plane are NP-Complete. Information Processing Letters 12(3), 133–137 (1981)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gusfield, D., Pitt, L.: A bounded approximation for the minimum cost 2-Sat problem. Algorithmica 8(2), 103–117 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kao, H.-J., Lin, C.-C., Yen, H.-C.: Many-to-one boundary labeling. In: Hong, S.-H., Ma, K.-L. (eds.) Proc. 6th International Asia-Pacific Symposium on Visualization (APVIS 2007), pp. 65–72. IEEE, Los Alamitos (2007)Google Scholar
  13. 13.
    van Kreveld, M., Strijk, T., Wolff, A.: Point labeling with sliding labels. Computational Geomentry: Theory and Applications 13, 21–47 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kucera, L., Mehlhorn, K., Preis, B., Schwarzenecker, E.: Exact algorithms for a geometric packing problem. In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 317–322. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  15. 15.
    Lin, C.-C.: Crossing-free many-to-one boundary labeling with hyperleaders. In: 3rd IEEE Pacific Visualization Symposium (PacificVis 2010), pp. 185–192. IEEE Press, Los Alamitos (2010)CrossRefGoogle Scholar
  16. 16.
    Lin, C.-C., Wu, H.-Y., Yen, H.-C.: Boundary labeling in text annotation. In: 13th International Conference on Information Visualisation (IV2009), pp. 110–115. IEEE, Los Alamitos (2009)CrossRefGoogle Scholar
  17. 17.
    Mehlhorn, K.: Data structures and algorithms 3: multi-dimensional searching and computational geometry. Springer-Verlag New York, Inc., Heidelberg (1984)CrossRefMATHGoogle Scholar
  18. 18.
    Poon, C.K., Zhu, B., Chin, F.: A polynomial time solution for labeling a rectilinear map. In: Proc. 13th Annual ACM Symposium on Comp. Geom (SoCG 1997), pp. 451–453 (1997)Google Scholar
  19. 19.
    Wolff, A., Strijk, T.: The Map-Labeling Bibliography, maintained since (1996), http://i11www.ira.uka.de/map-labeling/bibliography
  20. 20.
    Zoraster, S.: Integer programming applied to the map label placement problem. Cartographica 23(3), 16–27 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Michael Kaufmann
    • 2
  • Dimitrios Papadopoulos
    • 1
  • Antonios Symvonis
    • 1
  1. 1.School of Applied Mathematical & Physical SciencesNational Technical University of AthensGreece
  2. 2.Institute for InformaticsUniversity of TübingenGermany

Personalised recommendations