Skip to main content

Analysis of a Time-Space Periodic Filter Structure with Tunable Band-Pass Characteristic

  • Chapter
  • First Online:
Electromagnetics and Network Theory and their Microwave Technology Applications

Abstract

A periodically in time and space modulated medium gives rise to an electromagnetic bandgap structure. The band characteristic can be shifted by tuning of the time modulation of the medium. We compare the effect of a sinusoidally modulated structure on the bandgap using an FDTD implementation for curved moving boundaries with an approximation to the analytic solution derived from Floquet’s theorem. For the latter one we consider the mutual coupling of a finite set of time-space harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Brillouin, Wave Propagation in Periodic Structures. (Dover, New York, 1953)

    Google Scholar 

  2. J.C. Slater, Interaction of waves in crystals. Rev. Mod. Phys. 30(1)

    Google Scholar 

  3. A. Oliner, A. Hessel, Guided waves on sinusoidally-modulated reactance surfaces. Antennas Propag. IRE Trans. 7(5), 201–208 (1959)

    Article  Google Scholar 

  4. J.-C. Simon, Action of a progressive disturbance on a guided electromagnetic wave. Microw. Theory Techn. IRE Trans. 8(1), 18–29 (1960)

    Article  Google Scholar 

  5. A. Hessel, A. Oliner, Wave propagation in a medium with a progressive sinusoidal disturbance. Microw. Theory Techn. IRE Trans. 9(4), 337–343 (1961)

    Article  MathSciNet  Google Scholar 

  6. E. Cassedy, A. Oliner, Dispersion relations in time-space periodic media: Part i-stable interactions. Proc. IEEE 51(10), 1342–1359 (1963)

    Article  Google Scholar 

  7. T. Tamir, H. Wang, A. Oliner, Wave propagation in sinusoidally stratified dielectric media. Microw. Theory Techn. IEEE Trans. 12(3), 323–335 (1964)

    Article  Google Scholar 

  8. C. Yeh, K. Casey, Z. Kaprielian, Transverse magnetic wave propagation in sinusoidally stratified dielectric media. Microw. Theory Techn. IEEE Trans. 13(3), 297–302 (1965)

    Article  Google Scholar 

  9. L. Matekovits, G. Colome, M. Orefice, Propagation of electromagnetic waves in a sinusoidally modulated dielectric substrate. Antennas Wireless Propag. Lett. IEEE 6, 207–210 (2007)

    Article  Google Scholar 

  10. P. Russer, Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering, 2nd edn. (Artech House, Boston, 2006)

    Google Scholar 

  11. C. Elachi, Waves in active and passive periodic structures: A review. Proc. IEEE 64(12), 1666–1698 (1976)

    Article  Google Scholar 

  12. É. Mathieu, Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. Journal des Mathématiques Pures et Appliquées 13, 137–203 (1868)

    Google Scholar 

  13. N.W. McLachlan, Theory and Application of Mathieu Functions. (Clarendon, Oxford, 1951)

    Google Scholar 

  14. P.M. Morse, H. Feshbach, Methods of Theoretical Physics – Part 1. (McGraw-Hill, New York, 1953)

    Google Scholar 

  15. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Annales Scientifiques de L’É.N.S. 2(12), 47–88 (1883)

    Google Scholar 

  16. R.E. Collin, Field Theory of Guided Waves. (IEEE, New York, 1991)

    Google Scholar 

  17. J. Manley, H. Rowe, Some general properties of nonlinear elements – Part I. General energy relations. Proc. IRE 44(7), 904–913 (1956)

    Google Scholar 

  18. G.N. Burlak, N.Y. Kotsarenko, S.V. Koshevaya, Interaction of electromagnetic and acoustic waves in solids. Russ. Phys. J. 24(8), 732–742 (1981)

    Google Scholar 

  19. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat. 14, 302–307 (1966)

    MATH  Google Scholar 

  20. A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. (Artech House, Boston, 2005)

    Google Scholar 

  21. J.A. Russer, P.S. Sumant, A.C. Cangellaris, A Lagrangian approach for the handling of curved boundaries in the finite-difference time-domain method. in IEEE MMT-S International Microwave Symposium, pp. 717–720. June 2007

    Google Scholar 

  22. J.A. Russer, P.S. Sumant, A.C. Cangellaris, Modeling of curved boundaries in the finite-difference time-domain method using a Lagrangian approach. Springer Proc. Phys. 121, 55–68 (2008)

    Article  Google Scholar 

  23. J.A. Russer, A.C. Cangellaris, An efficient methodology for the modeling of electromagnetic wave phenomena in domains with moving boundaries. in IEEE MMT-S International Microwave Symposium, pp. 157–160. June 2008

    Google Scholar 

  24. C.T. Kelley, Solving Nonlinear Equations with Newton’s Method. (Society for Industrial and Applied Mathematics, Philadelphia, 2003)

    Google Scholar 

  25. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported in part by the U.S. Army Research Office as a Multi-disciplinary University Research Initiative on Standoff Inverse Analysis and Manipulation of Electronic Systems under grant number W911NF-05-1-0337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes A. Russer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russer, J.A., Cangellaris, A.C. (2011). Analysis of a Time-Space Periodic Filter Structure with Tunable Band-Pass Characteristic. In: Lindenmeier, S., Weigel, R. (eds) Electromagnetics and Network Theory and their Microwave Technology Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18375-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18375-1_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18374-4

  • Online ISBN: 978-3-642-18375-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics