Skip to main content

Perspectives of PGPR in Agri-Ecosystems

  • Chapter
  • First Online:
Bacteria in Agrobiology: Crop Ecosystems

Abstract

Bacteria inhabiting the rhizosphere and beneficial to plants are termed as plant growth-promoting rhizobacteria (PGPR). A putative rhizobacteria qualifies as PGPR when it is able to produce a positive effect on the plant upon inoculation, hence demonstrating good competitive skills over existing rhizosphere communities. Generally 2–5% of rhizosphere bacteria are PGPR. A thorough understanding of the PGPR action mechanisms is fundamental to manipulating the rhizosphere in order to maximize the process within the system that influence plant productivity. Scientists have divided the mechanism of action into direct and indirect. Direct mechanisms are those that occur inside the plant and directly affect the plants metabolism while indirect mechanisms require participation of the plants defensive metabolic process, which transduce the signal sent from the bacteria influencing the plant. PGPR benefit plants indirectly by providing protection against phytopathogens by production of secondary metabolites, while direct mechanisms include production of phytohormones, nitrogen fixation, and phosphate solubilization. Hence, these plant-associated bacteria have implications as biofertilizers. A better understanding of the challenges in the development of PGPR as efficient commercial bioinoculants would facilitate the use of these organisms for sustainable agricultural development. This review article provides an insight into some of the very basic characteristics that define the persona of a PGPR strain and the developmental challenges faced by it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Morrissey JP, Marquez PC, Sheehan MM, Delany IR, O’Gara F (2002) Characterization of interactions between the transcriptional repressor Phl F and its binding site at the phl A promoter in Pseudomonas fluorescens F1113. J Bacteriol 184(11):3008–3016

    PubMed  CAS  Google Scholar 

  • Agnoli K, Lowe CA, Farmer KL, Husnain SI, Thomas MS (2006) The ornibactin biosynthesis and transport genes of Burkholderia cenocepacia are regulated by an extracytoplasmic function factor which is a part of the Fur regulon. J Bacteriol 188(10):3631–3644

    PubMed  CAS  Google Scholar 

  • Agrios GN (1997) Plant pathology, 4th edn. Academic, San Diego, CA

    Google Scholar 

  • Ambrosi C, Leoni L, Putignani L, Orsi N, Visca P (2000) Pseudobactin biogenesis in the plant growth-promoting rhizobacterium Pseudomonas Strain B10: Identification and functional analysis of the L-Ornithine N 5-Oxygenase (psbA) gene. J Bacteriol 182(21):6233–6238

    PubMed  CAS  Google Scholar 

  • Arora NV, Khare E, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC 2 during the inhibition of Rhizoctonia solani and Phytopthora capsici. World J Microbiol Biotechnol 24:581–585

    Google Scholar 

  • Babu-Khan S, Yeo TC, Martin WL, Duron MR, Rogers RD, Goldstein AH (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61(3):972–978

    PubMed  CAS  Google Scholar 

  • Barea JM, Navarro E, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Bacteriol 40:129–134

    PubMed  CAS  Google Scholar 

  • Bent E, Breuil C, Enebak S, Chanway CP (2002) Surface colonization of lodgepole pine (Pinus contorta var lati folia [Dougl. Engelm.]) roots by Pseudomonas fluorescens and Paenibacillus polymyxa under gnotobiotic conditions. Plant Soil 241:187–196

    CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    PubMed  CAS  Google Scholar 

  • Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–2911

    PubMed  CAS  Google Scholar 

  • Butterton JR, Choi MH, Watnick PL, Carroll PA, Calderwood SB (2000) Vibrio cholerae VibF is required for vibriobactin synthesis and is a member of the family of nonribosomal peptide synthetases. J Bacteriol 182(6):1731–1738

    PubMed  CAS  Google Scholar 

  • Cakmakci R, Kantar F, Algur OF (1999) Sugar beet and barley yield in relation to Bacillus polymyxa and Bacillus megaterium var. phosphaticum inoculation. J Plant Nutr Soil Sci 162:437–442

    CAS  Google Scholar 

  • Castric PA (1994) Influence of oxygen on the Pseudomonas aeruginosa hydrogen cyanide synthase. Curr Microbiol 29:19–21

    CAS  Google Scholar 

  • Chen Q, Wertheimer AM, Tolmasky ME, Crosa JH (1996) The AngR protein and the siderophore anguibactin positively regulate the expression of iron-transport genes in Vibrio anguillarum. Mol Microbiol 22:127–134

    PubMed  CAS  Google Scholar 

  • Chincholkar SB, Chaudhari BL, Talegaonkar SK, Kothari RM (2000) Microbial Iron Chelators: A sustainable tool for biocontrol of plant diseases. In: Upadhaya RK, Mukerji KG, Chamola BP (eds) Biocontrol potential and its exploitation in sustainable agriculture. Kluwer Academic Press, New York, pp. 49–67

    Google Scholar 

  • de Freitas JR (2000) Yield and N assimilation of winter wheat (Triticum aestivum L., var Norstar) inoculated with rhizobacteria. Pedobiologia 44:97–104

    Google Scholar 

  • de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Google Scholar 

  • de Weger LA, Jann LB, Jann K, Lugtenberg B (1987) Lipopolysaccharides of Pseudomonas spp. that stimulate plant growth: composition and use for strain identification. J Bacteriol 169:1441–1446

    PubMed  Google Scholar 

  • Dobereiner J, Day JM, Dart PJ (1972) Nitrogenase activity in the rhizosphere of sugar cane and some other tropical grasses. Plant Soil 37:191–196

    Google Scholar 

  • Doran JW, Sarrantonio M, Liebig MA (1996) Soil health and sustainability. In: Sparks DL (ed) Advances in agronomy. Academic, San Diego, CA, pp 1–54

    Google Scholar 

  • Drechsel H, Jung G (1998) Peptide siderophores. J Pept Sci 4:147–181

    PubMed  CAS  Google Scholar 

  • Ernst JF, Bennett RL, Rothfield LI (1978) Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in the mutant strain of Salmonella typhimurium. J Bacteriol 135:928–934

    PubMed  CAS  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2006) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 67–109

    Google Scholar 

  • Flaishman MA, Eyal Z, Zilberstein A, Voisard C, Hass D (1996) Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. Mol Plant Microbe Interact 9:642–645

    CAS  Google Scholar 

  • Fraga R, Rodrıguez H, Gonzalez T (2001) Transfer of the gene encoding the Nap A acid phosphatase from Morganella morganii to a Burkholderia cepacia strain. Acta Biotechnol 21(4):359–369

    CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soil borne plant pathogens by a b-1, 3-glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    CAS  Google Scholar 

  • Garland JL (1996) Patterns of potential C source utilization by rhizosphere communities. Soil Biol Biochem 28:223–230

    CAS  Google Scholar 

  • Gaur AC (1990) Phosphate solubilising microorganisms as biofertilizer. Omega Scientific Publisher, New Delhi, India

    Google Scholar 

  • Gehring AM, Bradley KA, Walsh CT (1997) Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochemistry 36(28):8495–8503

    PubMed  CAS  Google Scholar 

  • Germida JJ, Siciliano SD, de Freitas JR, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum). FEMS Microbiol Ecol 26:43–50

    CAS  Google Scholar 

  • Gibson F, Magrath DJ (1969) The isolation and characterization of a hydroxamic acid from Aerobacter aerogenes 62-1. Biochimica Biophysica Acta 192(2):175–184

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR, Karaturovíc DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536

    CAS  Google Scholar 

  • Glick BR, Cheng Z, Crarny J, Duan J (2007) Promotion of plant growth by ACC- deaminase producing soil bacteria. Eur J Plant Pathol 119:329–339

    CAS  Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Bio Technol 5:72–74

    CAS  Google Scholar 

  • Goldstein AH, Rogers RD, Mead G (1993) Mining by microbe. Bio Technol 11:1250–1254

    CAS  Google Scholar 

  • Golovan S, Wang G, Zhang J, Forsberg CW (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46:59–71

    PubMed  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  • Guissou T, Ba AM, Guinko S, Plenchette C, Dupponois R (2001) Mobilisation des phosphates naturels de kodijari par des jujubiers (Ziriphus mauritiana Lam.) mycorhizes das un sol acidifie avec de la tourbe. Fruits 56:261–269

    Google Scholar 

  • Gupta R, Singal R, Sankar A, Chander RM, Kumar RS (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260

    CAS  Google Scholar 

  • Gutterson NI, James DW (1986) Multiple antibiotics produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose. Appl Environ Microbiol 52(5):1183–1189

    PubMed  Google Scholar 

  • Halder AK, Chakrabartty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    CAS  Google Scholar 

  • Harris JN, New PB, Martin PB (2006) Laboratory tests can predict beneficial effects of phosphate solubilising-bacteria on plants. Soil Biol Biochem 38(7):1521–1526

    CAS  Google Scholar 

  • Heffer P, Prud’homme M (2008) Outlook for world fertilizer demand, supply, and supply/demand balance. Turk J Agr Forest 32:159–164

    Google Scholar 

  • Iddris EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borris R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Google Scholar 

  • Jabs T, Tschoepe M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor stimulated ion fluxes and 02 (-) from the oxidative burst are essential components in triggering defence gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci U S A 94:4800–4805

    PubMed  CAS  Google Scholar 

  • Jousset A, Scheut S, Bonkowski M (2008) Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol 22(4):714–719

    Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacterium (PGPR) on yield, growth and nutrient element content of leaves of apple. Sci Hortic 114:16–20

    CAS  Google Scholar 

  • Keel C, Péchy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD, Donahue KM, Grunder J, Loper JE (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10(9):2368–2386

    PubMed  Google Scholar 

  • Kende H, Zeevaart JAD (1997) The five “classical” plant hormones. Plant Cell 9(7):1197–1210

    PubMed  CAS  Google Scholar 

  • Kennedy IR, Pereg-Gerk LL, Wood C, Deaker R, Gilchrist K, Katupitiya S (1997) Biological nitrogen fixation in non-leguminous field crops: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194:65–79

    CAS  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    PubMed  CAS  Google Scholar 

  • Kim KY, McDonald GA, Jordan D (1997) Solubilization of hydroxypatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352

    CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria and microbial activity in soil: Effect of carbon sources. Soil Biol Biochem 30:995–1003

    CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes, in: Station de pathologie vegetale et phyto-bacteriologie (ed), Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, vol II. Gilbert-Clarey, Tours, France. pp 879–882

    Google Scholar 

  • Krishnaraj PU, Goldstein AH (2001) Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol Lett 205:215–220

    PubMed  CAS  Google Scholar 

  • Kucey RMN (1983) Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678

    CAS  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010). Wilt disease management and enhancement of growth and yield of Cajanus cajan(L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 1–8. doi:10.1016/j. Crop Pro. 2010.01.002

    Google Scholar 

  • Kundu BS, Gaur AC (1981) Effect of single and composite culture on rock phosphate solubilization. Haryana Agri Univ J Res 11:559–562

    Google Scholar 

  • Lal L (2002) Phosphatic biofertilizers. Agrotech Publishing Academy, Udaipur, India, p 224

    Google Scholar 

  • LaMarca BBD, Zhu W, Arceneaux JEL, Byers BR, Lundrigan MD (2004) Participation of fad and mbt genes in synthesis of mycobactin in Mycobacterium smegmatis. J Bacteriol 186(2):374–382

    PubMed  CAS  Google Scholar 

  • Lee S, Choi H, Suh S, Doo IS, Oh KY, Choi EJ, Schroeder I, Low PS, Lee Y (1999) Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cell of tomato and Commelina communis. Plant Physiol 121:147–152

    PubMed  CAS  Google Scholar 

  • Loper JE, Ishimaru CA, Carnegie SR, Vanavichit A (1993) Cloning and characterization of aerobactin biosynthesis genes of the biological control agent Enterobacter cloacae. Appl Environ Microbiol 59(12):4189–4197

    PubMed  CAS  Google Scholar 

  • Lucas Garcia JA, Probanza A, Ramos B, Barriuso J, Gutierrez Manero FJ (2004) Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fedii on biological nitrogen fixation, nodulation and growth of Glycine max cv Osumi. Plant Soil 267:143–153

    Google Scholar 

  • Mahmoud SAZ, Ramadan EM, Thabet FM, Khater T (1984) Production of plant growth promoting substances by rhizosphere microorganisms. Zentralblatt Fur Mikrobiologia 139:227–232

    Google Scholar 

  • Malamy JE, Benfey PN (1997) Organisation and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    PubMed  CAS  Google Scholar 

  • Mei B, Budde AD, Leong SA (1993) sid 1, a gene initiating siderophore biosynthesis in Ustilago maydis: Molecular characterization, regulation by iron and role in phytogenecity. Proc Natl Acad Sci U S A 90:903–907

    PubMed  CAS  Google Scholar 

  • Merrick MJ (1992) Regulation of nitrogen fixation genes in free-living and symbiotic bacteria. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 835–876

    Google Scholar 

  • Mordukhova EA, Skvortsova NP, Kochetkov VV, Dubeikovskii AN, Boronin AM (1991) Synthesis of the phytohormone indole-3-acetic acid by rhizosphere bacteria of the genus Pseudomonas. Mikrobiologiya 60:494–500

    CAS  Google Scholar 

  • Motsara MR, Bhattacharyya PB, Srivastava B (1995) Biofertilizers their description and characteristics. In: Biofertilizer technology, marketing and usage, a sourcebook-cum-Glossary. Fertilizer Development and Consultation Organization, 204–204 A1 Corner, 1–2 Pamposh Enclave, New Delhi, India, pp. 9–18

    Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganism isolated from soil. World J Microbiol Biotechnol 12:18–23

    Google Scholar 

  • Narula N, Deubel A, Gans W, Behl RK, Merbach W (2006) Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environ 52(3):119–129

    CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening of phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    PubMed  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    PubMed  CAS  Google Scholar 

  • Oliveira PH, Batagov A, Ward J, Baganz F, Krabben P (2006) Identification of erythrobactin, a hydroxamate-type siderophore produced by Saccharopolyspora erythraea. Lett Appl Microbiol 42:375–380

    PubMed  CAS  Google Scholar 

  • Omar SA (1998) The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–219

    CAS  Google Scholar 

  • Pal SS (1998) Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177

    CAS  Google Scholar 

  • Patel DK, Archana G, Naresh Kumar G (2007) Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. in the presence of different sugars. Curr Microbiol 56(2):168–174

    PubMed  Google Scholar 

  • Pelludat C, Rakin A, Jacobi CA, Schubert S, Heesemann J (1998) The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: Organization and siderophore-dependent regulation. J Bacteriol 180(3):538–546

    PubMed  CAS  Google Scholar 

  • Polenko DR, Scher FM, Kloepper JW, Singleton CA, Laliberte M, Zaleska I (1987) Effects of root colonizing bacteria on nodulation of soyabean roots by Bradyrhizobium japonicum. Can J Microbiol 33:498–503

    Google Scholar 

  • Ponmurugan P, Gopi C (2006) In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr J Biotechnol 5:348–350

    CAS  Google Scholar 

  • Raza W, Wu H, Shah MAA, Shen Q (2008) A catechol type siderophore, bacillibactin: biosynthesis, regulation and transport in Bacillus subtilis. J Basic Microbiol, 48: n/a. doi: 10.1002/jobm.200800097

    Google Scholar 

  • Reimmann C, Patel HM, Serino L, Barone M, Walsh CT, Haas D (2001) Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. J Bacteriol 183(3):813–820

    PubMed  CAS  Google Scholar 

  • Remans R, Crooneborghs A, Gutierrez RT, Michelis J, Vanderleyden J (2007) Effects of plant growth promoting rhizobacteria on nodulation of Phaseolus vulgaris L are dependent on plant P nutrition. Eur J Plant Pathol 119:341–351

    CAS  Google Scholar 

  • Renwick A, Campbell R, Coe S (1991) Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol 40:524–532

    Google Scholar 

  • Reyes I, Bernier L, Simard R, Antoun H (1999) Effect of nitrogen source on solubilization of different inorganic phosphates by an isolate Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290

    CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorous from phytate. Plant J 25:641–649

    PubMed  CAS  Google Scholar 

  • Richardson AE (2007) Making microorganisms mobilize soil phosphorus. In: VelÃzquez E, RodrÚguez-Barrueco C (eds.), First International Meeting on Microbial Phosphate Solubilization, pp. 85–90

    Google Scholar 

  • Rondon MR, Goodman RM, Handelsman J (1999) The earth’s bounty: assessing and accessing soil microbial diversity. Trends Biotechnol 17:403–409

    PubMed  CAS  Google Scholar 

  • Rossolini GM, Shipa S, Riccio ML, Berlutti F, Macaskie LE, Thaller MC (1998) Bacterial non-specific acid phosphatases: physiology, evolution, and use as tools in microbial biotechnology. Cell Mol Life Sci 54:833–850

    PubMed  CAS  Google Scholar 

  • Rovera M, Carlier E, Pasluosta C, Avazini G, Andres J, Rosas S (2008) Pseudomonas aurantiaca SR1: plant growth promoting traits, secondary metabolites and crop inoculation. In: Ahmad I, Pichtel J, Hayat S (eds.), Plant-Bacteria Interactions: Strategies and Techniques to Promote Plant Growth. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 155–161

    Google Scholar 

  • Rudresh DL, Shivprakash MK, Prasad MD (2004) Effect of combined applications of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl Soil Ecol 28:139–146

    Google Scholar 

  • Runge-Metzger A (1995) Closing the cycle: obstacles to efficient P management for improved global food security. In: Tiessen H (ed) Phosphorus in the global environment: transfers, cycles and management. Wiley, New York, pp 27–42

    Google Scholar 

  • Saber K, Nahla L, Ahmed D, Chedly A (2005) Effect of P on nodule formation and N fixation in bean. Agron Sustain Dev 25:389–393

    Google Scholar 

  • Sanchez PA, Shepherd KD, Soule MJ, Place FM, Buresh RJ, Izak AMN (1997) Soil fertility replenishment in Africa: An investment in natural resource capital. Pp 1-46 In: Replenishing Soil Fertility in Africa. Madison, Wisconsin, USA: Soil Science Society of America Special Publication No. 51

    Google Scholar 

  • Saraf M, Thakker A, Patel BV (2008) Biocontrol activity of different species of pseudomonas against phytopathogenic fungi in vivo and in vitro conditions. Int J Biotech Biochem 4(3):217–226

    Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573

    CAS  Google Scholar 

  • Schroder I, Johnson E, de Vries S (2003) Microbial ferric ion reductases. FEMS Microbiol Rev 27:427–447

    PubMed  CAS  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Ait Barka E, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov. a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    PubMed  CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2, 4-Diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    PubMed  CAS  Google Scholar 

  • Sharma A (2008) Rhamnolipid producing PGPR and their role in damping off disease suppression. In: Iqbal Ahmad, John Pichtel, Shamsul Haya (eds) Plant bacteria interactions strategies and techniques to promote plant growth. Wiley – VCH Publications, Weinheim, pp 213–228

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. cicer in chickpea. Microbiol Res 156:353–358

    PubMed  CAS  Google Scholar 

  • Singh N, Pandey P, Dubey RC, Mahehwari DK (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii by rhizospheric component Bacillus subtilis. World J Microbiol Biotechnol 24:1669–1697

    Google Scholar 

  • Sorensen J, Jensen LE, Nybroe O (2001) Soil and rhizosphere as habitats for Pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies. Plant Soil 232:97–108

    CAS  Google Scholar 

  • Sri Widawati S, Latupapua HJD, Arwan S (2004) Biodiversity of soil microbes from rhizosphere at Wamena biological garden (WBiG), Jayawijaya and Papua. Biodiversitas 6(1):6–11

    Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free living nitrogen fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506

    PubMed  CAS  Google Scholar 

  • Strigul NS, Kravchenko LV (2005) Mathematical modeling of PGPR inoculation in the rhizosphere. J Environ Modeling Software 21(8):1158–1171

    Google Scholar 

  • Subba Rao NS (1999) Soil microbiology. Science Publishers, Oak Park, IL

    Google Scholar 

  • Sudha SN, Jayakumar R, Sekar V (1999) Introduction and expression of the cry1Ac gene of Bacillus thuringiensis in a cereal-associated bacterium, Bacillus polymyxa. Curr Microbiol 38:163–167

    PubMed  CAS  Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel spiked soil using PGPR. J Basic Microbiol 49:195–204

    PubMed  CAS  Google Scholar 

  • Tank N, Saraf M (2010) Salinity resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–58

    CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    PubMed  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    CAS  Google Scholar 

  • Tsuda M, Miyazaki H, Nakazawa T (1995) Genetic and physical mapping of genes involved in pyoverdin production in Pseudomonas aeruginosa PAO. J Bacteriol 177(2):423–431

    PubMed  CAS  Google Scholar 

  • Tunlid A, White D (1992) Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. Soil Biochem 7:229–262

    CAS  Google Scholar 

  • Tye AJ, Siu FK, Leung TY, Lim PL (2002) Molecular cloning and the biochemical characterization of two novel phytases from Bacillus subtilis 168 and Bacillus licheniformis. Appl Microbiol Biotechnol 59:190–197

    PubMed  CAS  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Vandeputte O, Oden S, Mol A, Vereecke D, Goethals K, El Jaziri M, Prinsen E (2005) Biosynthesis of auxin by the Gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl Environ Microbiol 71(3):1169–1177

    PubMed  CAS  Google Scholar 

  • Vander P, Varum KM, Domard A, El-Gueddari NE, Moerschbacher BM (1998) Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reaction in wheat leaves. Plant Physiol 118:1353–1359

    PubMed  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez Cortes A, Bashan Y (2000) Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi arid coastal lagoon. Biol Fertil Soil 30:460–468

    CAS  Google Scholar 

  • Viswanathan R, Samiyappan R (2000) Antifungal activity of chitinases produces by some fluorescent pseudomonas against Colletotricum falcatum Went causing red rot disease in sugarcane. Microb Res 155:1–6

    Google Scholar 

  • Von Bulow JFW, Dobereiner J (1975) Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci U S A 72:2389–2393

    Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    PubMed  CAS  Google Scholar 

  • Welzel K, Eisfeld K, Antelo L, Anke T, Anke H (2005) Characterization of the ferrichrome A biosynthetic gene cluster in the homobasidiomycete Omphalotus olearius. FEMS Microbiol Lett 249:157–163

    PubMed  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–11

    PubMed  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Saraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saraf, M., Rajkumar, S., Saha, T. (2011). Perspectives of PGPR in Agri-Ecosystems. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Crop Ecosystems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18357-7_13

Download citation

Publish with us

Policies and ethics