New Models and Algorithms for Throughput Maximization in Broadcast Scheduling

(Extended Abstract)
  • Chandra Chekuri
  • Avigdor Gal
  • Sungjin Im
  • Samir Khuller
  • Jian Li
  • Richard McCutchen
  • Benjamin Moseley
  • Louiqa Raschid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6534)


In this paper we consider some basic scheduling questions motivated by query processing that involve accessing resources (such as sensors) to gather data. Clients issue requests for data from resources and the data may be dynamic or changing which imposes temporal constraints on the delivery of the data. A proxy server has to compute a probing schedule for the resources since it can probe a limited number of resources at each time step. Due to overlapping client requests, multiple queries can be answered by probing the resource at a certain time. This leads to problems related to some well-studied broadcast scheduling problems. However, the specific requirements of the applications motivate some generalizations and variants of previously studied metrics for broadcast scheduling. We consider both online and offline versions of these problems and provide new algorithms and results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bansal, N., Coppersmith, D., Sviridenko, M.: Improved approximation algorithms for broadcast scheduling. In: SODA, pp. 344–353 (2006)Google Scholar
  2. 2.
    Bartal, Y., Muthukrishnan, S.: Minimizing maximum response time inscheduling broadcasts. In: SODA, pp. 558–559 (2000)Google Scholar
  3. 3.
    Calinescu, G., Chekuri, C., Pal, M., Vondrak, J.: Maximizing a monotone submodular set function subject to a matroid constraint. SIAM J. on Computing (to appear)Google Scholar
  4. 4.
    Chan, W., Lam, T., Ting, H., Wong, P.: New Results on On-Demand Broadcasting with Deadline via Job Scheduling with Cancellation. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 210–218. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Carney, D., Lee, S., Zdonik, S.: Scalable Application-Aware Data Freshening. In: ICDE, pp. 481–492 (2003)Google Scholar
  6. 6.
    Chang, J., Erlebach, T., Gailis, R., Khuller, S.: Broadcast Scheduling: Algorithms and Complexity. In: SODA, pp. 473–482 (2008)Google Scholar
  7. 7.
    Charikar, M., Khuller, S.: A robust maximum completion time measure for scheduling. In: SODA, pp. 324–333 (2006)Google Scholar
  8. 8.
    Chekuri, C., Im, S., Moseley, B.: Minimizing Maximum Response Time and Delay Factor in Broadcast Scheduling. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 444–455. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Chekuri, C., Vondrak, J., Zenklusen, R.: Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures. In: FOCS (2010)Google Scholar
  10. 10.
    Chrobak, M., Dürr, C., Jawor, W., Kowalik, L., Kurowski, M.: A Note on Scheduling Equal-Length Jobs to Maximize Throughput. J. of Scheduling 9(1), 71–73 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Deolasee, P., Katkar, A., Panchbudhe, P., Ramamritham, K., Shenoy, P.: Adaptive Push-Pull: Deisseminating Dynamic Web Data. In: WWW (2001)Google Scholar
  12. 12.
    Eckstein, J., Gal, A., Reiner, S.: Monitoring an Information Source under a Politeness Constraint. INFORMS Journal on Computing 20(1), 3–20 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Edmonds, J., Pruhs, K.: Multicast pull scheduling: when fairness is fine. In: SODA, pp. 421–430 (2002)Google Scholar
  14. 14.
    Edmonds, J., Pruhs, K.: A maiden analysis of longest wait first. In: SODA, pp. 811–820 (2004)Google Scholar
  15. 15.
    Gal, A., Eckstein, J.: Managing Periodically Updated Data in Relational Databases: A Stochastic Modeling Approach. JACM 48(6), 1141–1183 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gandhi, R., Khuller, S., Kim, Y., Wan, Y.C.: Algorithms for minimizing response time in broadcast scheduling. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 415–424. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and its applications to approximation algorithms. JACM 53(3), 324–360 (2006); Preliminary version in FOCS (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Im, S., Moseley, B.: An Online Scalable Algorithm for Average Flow Time in Broadcast Scheduling. In: SODA (2010)Google Scholar
  19. 19.
    Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kalyanasundaram, B., Pruhs, K., Velauthapillai, M.: Scheduling broadcasts in wireless networks. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 290–301. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Kim, J., Chwa, K.: Scheduling broadcasts with deadlines. Theor. Comput. Sci. 325, 479–488 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Motwani, R., Raghavan, P.: Randomized Algorithms. ACM Comput. Surveys 28(1), 33–37 (1996)CrossRefzbMATHGoogle Scholar
  23. 23.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  24. 24.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions - I. Mathematical Programming 14(1), 265–294 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pandey, S., Dhamdhere, K., Olston, C.: WIC: A General-Purpose Algorithm for Monitoring Web Information Sources. In: VLDB, pp. 360–371 (2004)Google Scholar
  26. 26.
    Roitman, H., Gal, A., Raschid, L.: Satisfying Complex Data Needs using Pull-Based Online Monitoring of Volatile Data Sources. In: ICDE (2008)Google Scholar
  27. 27.
    Roitman, H.: Profile Based Online Data Delivery - Model and Algorithms. Ph.D. Thesis (2008)Google Scholar
  28. 28.
    Roitman, H., Gal, A., Raschid, L.: On Trade-offs in Event Delivery Systems. In: The 4th ACM International Conference on Distributed Event-Based Systems, DEBS (2010)Google Scholar
  29. 29.
    Zheng, F., Fung, S., Chan, W., Chin, F., Poon, C., Wong, P.: Improved On-Line Broadcast Scheduling with Deadlines. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 320–329. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chandra Chekuri
    • 1
  • Avigdor Gal
    • 2
  • Sungjin Im
    • 1
  • Samir Khuller
    • 3
  • Jian Li
    • 3
  • Richard McCutchen
    • 3
  • Benjamin Moseley
    • 1
  • Louiqa Raschid
    • 4
  1. 1.Dept. of Computer ScienceUniv. of IllinoisUrbanaUSA
  2. 2.Faculty of Industrial Engineering & ManagementTechnion – Israel Institute of TechnologyHaifaIsrael
  3. 3.Dept. of Computer Science and UMIACSUniv. of MarylandCollege ParkUSA
  4. 4.Robert H. Smith School of Business and UMIACSUniv. of MarylandCollege ParkUSA

Personalised recommendations