Skip to main content

Biogenic Nanoparticles: An Introduction to What They Are, How They Are Synthesized and Their Applications

  • Chapter
  • First Online:
Metal Nanoparticles in Microbiology

Abstract

Metal nanoparticles are well known to possess significant applications in different fields like electronics, agriculture, medicine, etc. A number of physical and chemical methods to date are available for the synthesis of nanoparticles. However, because of the drawbacks of these methods, researchers are focusing toward the development of protocols that offer use of biological agents for the synthesis of nanoparticles. Biogenic nanoparticles are safe, nontoxic, eco-friendly and toward a greener approach. In addition, biogenic nanoparticles offer applications in different fields of science and technology. But certain issues such as developing the exact mechanism for the synthesis of nanoparticles and the effect of size and shape on synthesis need to be considered. Thus, the present chapter offers an insight toward biogenic nanoparticles, their synthesis methods, and also the applications offered by biogenic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Shrinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Ashkarran AA, Zad AI, Mahdavi SM, Ahadian MM, Nezhad MRH (2009) Rapid and efficient synthesis of colloidal gold nanoparticles by arc discharge method. Appl Phys A: Mater Sci Process 96(2):423–428

    Article  CAS  Google Scholar 

  • Aslan K, Holley P, Geddes CD (2006) Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. J Mater Chem 16:2846–2852

    Article  CAS  Google Scholar 

  • Balasundaram G, Webster TJ (2006) Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine 1(2):169–176

    Article  PubMed  CAS  Google Scholar 

  • Bamberger ES, Perrett CW (2002) Angiogenesis in epithelian ovarian cancer. Mol Pathol 55:348–359

    Article  PubMed  CAS  Google Scholar 

  • Bansal V, Rautray D, Ahamd A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009a) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A: Physicochem Eng Asp 339:134–139

    Article  CAS  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009b) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A: Physicochem Eng Asp 348:212–216

    Article  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2007) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170

    Article  Google Scholar 

  • Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 24(4):199–204

    Article  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of naked nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya R, Patra CR, Verma R, Griepp PR, Mukherjee P (2007) Gold nanoparticles inhibit the proliferation of multiple myeloma cells. Adv Mater 19:711–716

    Article  CAS  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  PubMed  CAS  Google Scholar 

  • Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf A: Physicochem Eng Asp 202:175–186

    Article  CAS  Google Scholar 

  • Cao J, Hu X (2009) Synthesis of gold nanoparticles using halloysites. e-J Surf Sci Nanotechnol 7:813–815

    Article  CAS  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and eukaryotic alga with special reference to nanogold formation – a novel phenomenon. J Appl Phycol 21(1):145–152

    Article  CAS  Google Scholar 

  • Chandran SP, Ahmad A, Chaudhary M, Pasricha R, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583

    Article  PubMed  CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp 32883 with silver nitrate. Lett Appl Microbiol 37:105–108

    Article  PubMed  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and applications in water hygiene management. Langmuir 25(14):8192–8199

    Article  PubMed  CAS  Google Scholar 

  • Duran N, Marcato PD, Alves OL, DeSouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8

    Article  Google Scholar 

  • Duran N, Alves OL, De Souza GIH, Esposito E, Marcato PD (2007) Antibacterial effect of silver nanoparticles by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  Google Scholar 

  • Fernandez-Pacheco R, Arruebo M, Marquina C, Ibarra R, Arbiol J, Santamaria J (2006) Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method. Nanotechnology 17:1188–1192

    Article  CAS  Google Scholar 

  • Feynman R (1959) Lecture at the California Institute of Technology, December 29

    Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–247

    Article  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386

    Article  CAS  Google Scholar 

  • Gardea-Torresedey JL, Gomez E, Jose-Yacaman M, Parsons JG, Peralta-Videa JR, Tioani H (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39(1):22–28

    Article  CAS  Google Scholar 

  • Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100

    Article  PubMed  CAS  Google Scholar 

  • Govindraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    Article  Google Scholar 

  • Hanauer M, Lotz A, Pierrat S, Sonnichsen C, Zins I (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7(9):2881–2885

    Article  PubMed  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • Hennebel T, Gusseme BT, Boon N, Verstraete W (2009) Biogenic metals in water treatment. Trends Biotechnol 27(2):90–98

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Chen C, He N, Hong J, Lu Y, Qingbiao L, Shao W, Sun D, Wang XH, Wang Y, Yiang X (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105–106

    Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A: Mol Biomol Spectrosc 67:1003–1006

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Jana NR, Pal T, Sau TK, Wang ZL (2000) Seed- mediated growth method to prepare cubic copper nanoparticles. Curr Sci 79(9):1367–1370

    CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K, Kulkarni AR (2009) Plant system: nature’s nanofactory. Colloids Surf B: Biointerfaces 73:219–223

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater lett 62:4411–4413

    Article  CAS  Google Scholar 

  • Kim JS (2007) Antibacterial activity of Ag+ ion-containing silver nanoparticles prepared using the alcohol reduction method. J Ind Eng Chem 13(4):718–722

    CAS  Google Scholar 

  • Konishi Y, Nomura T, Tsukiyama T, Saioth N (2004) Microbial preparation of gold nanoparticles by anaerobic bacterium. Trans Mater Res Soc Japan 29:2341–2343

    CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Kulkarni SK, Paknikar KM, Vogel W, Urban J (2002) Microbial synthesis of Semiconductor CdS nanoparticles, their characterization, and their use in fabrication of an ideal diode. Biotechnol Bioeng 78(5):583–588

    Article  PubMed  CAS  Google Scholar 

  • Kowshik M, Ashataputre S, Kharrazi S, Kulkarni SK, Paknikari KM, Vogel W, Urban J (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Kumar AS, Ansary AA, Ahmad A, Khan MI (2007a) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium Oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007b) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Kvistek L, Prucek R (2005) The preparation and application of silver nanoparticles. J Mater Sci 22:2461–2473

    Google Scholar 

  • Laurencin CT, Kumbar SG, Nukavarapu SP (2008) Nanotechnology and orthopedics: a personal perspective. Nanotechnol Nanomed 1(1):6–10

    Article  Google Scholar 

  • Lengke M, Southam G (2006) Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Geochim Cosmochim Acta 70:3646–3661

    Article  CAS  Google Scholar 

  • Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Marazzi M, Angelis AD, Ravizza A, Ordanini MN, Falcone L, Chiaratti A, Crovoto F, Calo D, Veronese S, Rapisarda V (2007) Successful management of deep facial burns in a patient with extensive third degree burns: the role of a nanocrystalline dressing in facilitating resurfacing. Int Wound J 4:8–14

    Article  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 7:9275–9280

    Google Scholar 

  • Mouxing F, Qingbiao L, Daohua S, Yinghua L, Ning H, Xu D, Huixuan W, Jiale H (2006) Rapid Preparation Process of Silver Nanoparticles by Bioreduction and Their Characterizations. Chin J Chem Eng 14(1):114–117

    Article  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl −4 ions by the fungus Verticillium sp and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:103–110

    Google Scholar 

  • Nair LS, Laurencin CT (2007) Silver nanoparticles: synthesis and therapeutic applications. J Biomed Nanotechnol 3:301–316

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Design 2:293–298

    Article  CAS  Google Scholar 

  • Nangia Y, Wangoo N, Goyal N, Shekhawat G, Suri CR (2009) A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Fact. doi:101186/1475-2859-8-39

    PubMed  Google Scholar 

  • Ogi T, Saitoh N, Nomura T and Konishi Y (2010) Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J Nanopart Res. doi:101007/s11051-009-9822-8

    Google Scholar 

  • Omar A, Kempf C (2002) Removal of neutralized model parvoviruses and enteroviruses in human IgG solutions by nanofiltration. Transfusion 42(8):1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp: towards understanding biochemical synthesis mechanism. ChemBioChem 9:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Pastoriza-Santos I, Liz-Marzan LM (2000) Reduction of silver nanoparticles in DMF Formation of monolayers and stable colloids. Pure Appl Chem 72(1–2):83–90

    Article  CAS  Google Scholar 

  • Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nano Res Lett 2:248–250

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28(4):277–284

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009a) Silver nanoparticles: as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Yadav A, Bridge P, Gade A (2009b) Myconanotechnology: a new and emerging science. In: Rai MK, Bridge PD (eds) Applied mycology, vol 14. CAB International, New York, pp 258–267

    Chapter  Google Scholar 

  • Reddy VR (2006) Gold nanoparticles: synthesis and applications. Synlett 11:1791–1792

    Article  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f sp lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  PubMed  CAS  Google Scholar 

  • Rodrıguez-Perez A, Flores-Acosta M, Peirez-Salas R, Rodrıguez-Mijangos R (2006) Cu halide nanoparticle formation by diffusion of copper in alkali halide crystals. Rev Mexi de Fisica 52(2):151–154

    Google Scholar 

  • Rodríguez-Sánchez L, Blanco MC, López-Quintela MA (2000) Electrochemical Synthesis of Silver Nanoparticles. J Phys Chem. B 104(41):9683–9688

    Article  Google Scholar 

  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61(4):869–876

    Article  PubMed  CAS  Google Scholar 

  • Saini V, Zharov VP, Brazel CS, Nikles DE, Johnson DT, Everts M (2006) Combination of viral biology and nanotechnology: new applications in nanomedicine. Nanomed: Nanotechnol Biol Med 2:200–206

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85(2):162–170

    CAS  Google Scholar 

  • Sato M, Webster TJ (2004) Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert Rev Med Devices 1(1):105–114

    Article  PubMed  CAS  Google Scholar 

  • Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22(16):1781–1804

    Article  PubMed  CAS  Google Scholar 

  • Shahi SK, Patra M (2003) Microbially synthesized bioactive nanoparticles and their formulation active against human pathogenic fungi. Rev Adv Mater Sci 5:501–509

    Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Shahverdi N, Wong CW, Nur Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Eur J Chem 6(1):61–70

    Google Scholar 

  • Shaligram NS, Bule M, Bhambure RM, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–948

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Rai A, Sastry M (2004) Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles by using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(5):496–502

    Article  PubMed  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  PubMed  CAS  Google Scholar 

  • Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloid Surf B: Biointerface 57:97–101

    Article  CAS  Google Scholar 

  • Sintubin L, Windt WE, Dick J, Mast J, Ha DV, Verstarete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 87:741–749

    Article  Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioproc Biosyst Eng 44:1133–1138

    CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nano-technology Proceedings of the International Conference on Production Engineering Tokyo Part II Japan Society of Precision Engineering

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    PubMed  CAS  Google Scholar 

  • Tsai CY, Shiau AL, Chen SY, Chen YH, Cheng PC, Chang DH, Chen CH, Chou CR, Wang CL, Wu CL (2007) Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheumatoid 56:544–554

    Article  Google Scholar 

  • Valanne A, Huopalathi S, Soukka T, Vainionpaa R, Lovgren T, Harma H (2005) A sensitive adenovirus immunoassay as a model for using nanoparticle label technology in virus diagnostics. Clin J Virol 33:217–223

    CAS  Google Scholar 

  • Yang N, Aoki K (2005) Voltammetry of the silver alkylcarboxylate nanoparticles in suspension. Electrochim Acta 50:4868–4872

    Article  CAS  Google Scholar 

  • Zent CS, Call TG, Hogan WJ, Shanafelt TD, Kay NE (2006) Uptake on risk-stratified management for chronic lymphocytic leukemia. Leuk Lymphoma 47:1738–1746

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rajiv Gandhi Science and Technology Commission Mumbai, Govt. of Maharashtra for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rai, M., Gade, A., Yadav, A. (2011). Biogenic Nanoparticles: An Introduction to What They Are, How They Are Synthesized and Their Applications. In: Rai, M., Duran, N. (eds) Metal Nanoparticles in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_1

Download citation

Publish with us

Policies and ethics