Advertisement

Search and Validation of Short Genome-Wide Biomarkers for Bacterial Biological Phylogenies

  • Max H. Garzon
  • Tit-Yee Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6518)

Abstract

We continue the exploration of DNA-based indexing as a universal coordinate system in DNA spaces to characterize very large groups (families, genera, and even phylla) of organisms on a uniform biomarker reference system, a comprehensive “Atlas of Life”, as it is or as it could be on earth. We provide a second confirmation that DNA noncrosshybridizing (nxh) sets can be successfully applied to infer ab-initio phylogenetic trees by providing a method to measure distances among entire genomes indexed by sets of short oligonucleotides selected so as to minimize crosshybridization. These phylogenies are solidly established and well accepted in bacterial biology, albeit done by analyses of relatively small segments of highly conserved rybozomic DNA. Second, it is further demonstrated that DNA indexing does provide novel and principled genome-wide predictions into the phylogenesis of organisms hitherto inaccessible by current methods, such as a prediction of the origin of the Salmonella plasmid 50 as being acquired horizontally, likely from some bacteria somewhat related to Yesinia. We conclude with some discussion about the scalability and potential of this method to develop a comprehensive tree of life based on genome-wide methods.

Keywords

DNA codeword design noncrosshybridizing oligonucleotide bases phylogenetic analysis genomicsignatures DNA chips 16S rRNA tree of life 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.: Molecular computation of solutions of combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Blain, D., Garzon, M.H., Shin, S.Y., Zhang, B.T., Kashiwamura, S., Yamamoto, M., Kameda, A., Ohuchi, A.: Development, Evaluation and Benchmarking of Simulation Software for Biomolecule-based Computing. J. of Natural Computing 3(4), 427–442 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bobba, K.C., Neel, A.J., Phan, V., Garzon, M.H.: “Reasoning” and “Talking” DNA: Can DNA understand english? In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 337–349. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Deaton, R., Garzon, M., Wood, D.H., Bi, H., Carpenter, D., Wang, Y.Z.: Characterization of Non-Crosshybridizing DNA Oligonucleotides Manufactured in vitro. J. of Natural Computing 5(2), 165–181 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Deaton, J., Chen, J., Garzon, M., Wood, D.H.: Test Tube Selection of Large Independent Sets of DNA Oligonucleotides R, pp. 152–166. World Publishing Co, Singapore (2006) (Volume dedicated to Ned Seeman on occasion of his 60th birthday)Google Scholar
  6. 6.
    Garzon, M.H., Wong, T.-Y., Phan, V.: DNA Chips for Species Identification and Biological Phylogenies. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 55–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Garzon, M.H., Phan, V., Neel, A.: Optimal Codes for Computing and Self-Assembly. Int.. J. of Nanotechnology and Molecular Computing 1, 1–17 (2009b)CrossRefGoogle Scholar
  8. 8.
    Garzon, M.H., Yan, H. (eds.): DNA 2007. LNCS, vol. 4848. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  9. 9.
    Garzon, M.H., Phan, V., Bobba, K.C., Kontham, R.: Sensitivity and capacity of microarray encodings. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp. 81–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Garzon, M.H., Blain, D., Neel, A.J.: Virtual Test Tubes for Biomolecular Computing. J. of Natural Computing 3(4), 461–477 (2004)CrossRefGoogle Scholar
  11. 11.
    Neel, A., Garzon, M.: Semantic Retrieval in DNA-Based Memories with Gibbs Energy Models. Biotechnology Progress 22(1), 86–90 (2006)CrossRefGoogle Scholar
  12. 12.
    Ochman, H., Elwyn, S., et al.: Calibrating bacterial evolution. Proc. Natl. Acad. Sci. USA 96(22), 12638–12643 (1999)CrossRefGoogle Scholar
  13. 13.
    Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos, H.H., Smith, L.M.: Thermodynamically based DNA strand design, Nucleic Acids Res. Thermodynamically Based DNA Strand Design, Nucleic Acids Res. 33(15), 4951–4964 (2005)CrossRefGoogle Scholar
  14. 14.
    Volff, J.N., Altenbuchner, J.: A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol. Lett. 186(2), 143–150 (2000)CrossRefGoogle Scholar
  15. 15.
    Woese, C., Fox, G.: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088–5090 (1977)CrossRefGoogle Scholar
  16. 16.
    Wong, T.Y., Fernandes, S., Sankhon, N., Leong, P.P., Kuo, J., Liu, J.K.: On the role of premature stop codons in bacterial evolution. J. Bacteriology (2009) (in press); Preliminary result presented at the 3rd Congress of FEMS (2008)Google Scholar
  17. 17.
    Zhou, F., Olman, V., Xu, Y.: Barcodes for Genomes and Applications. Bioinformatics 9, 546 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Max H. Garzon
    • 1
  • Tit-Yee Wong
    • 2
  1. 1.Computer ScienceThe University of MemphisTennesseeUSA
  2. 2.BiologyThe University of MemphisTennesseeUSA

Personalised recommendations