Skip to main content

Simple Evolution of Complex Crystal Species

  • Conference paper
DNA Computing and Molecular Programming (DNA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6518))

Included in the following conference series:

Abstract

Cairns-Smith has proposed that life began as structural patterns in clays that self-replicated during cycles of crystal growth and fragmentation. Complex, evolved crystal forms could then have catalyzed the formation of a more advanced genetic material. A crucial weakness of this theory is that it is unclear how complex crystals might arise through Darwinian selection. Here we investigate whether complex crystal patterns could evolve using a model system for crystal growth, DNA tile crystals, that is amenable to both theoretical and experimental inquiry. It was previously shown that in principle, the evolution of crystals assembled from a set of thousands of DNA tiles under very specific environmental conditions could produce arbitrarily complex patterns. Here we show that evolution driven only by the dearth of one monomer type could produce complex crystals from just 12 monomer types. The proposed mechanism of evolution is simple enough to test experimentally and is sufficiently general that it may apply to other DNA tile crystals or even to natural crystals, suggesting that complex crystals could evolve from simple starting materials because of relative differences in concentrations of the materials needed for growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adami, C.: Introduction to Artifical Life. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  2. Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: Copying and counting. Nano Letters 5, 2586–2592 (2005)

    Article  Google Scholar 

  3. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proceedings of the National Academy of Sciences USA 106(15), 6054–6059 (2009)

    Article  Google Scholar 

  4. Bullard, T., Freudenthal, J., Avagyan, S., Kahr, B.: Test of Cairns-Smith’s crystals-as-genes hypothesis. Faraday Discussions 136, 231–245 (2007)

    Article  Google Scholar 

  5. Cairns-Smith, A.G.: The origin of life and the nature of the primitive gene. Journal of Theoretical Biology 10, 53–88 (1966)

    Article  Google Scholar 

  6. Cairns-Smith, A.G.: Genetic Takeover and the Mineral Origins of Life. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  7. Cairns-Smith, A.G.: The chemistry of materials for artificial Darwinian systems. International Reviews in Physical Chemistry 7, 209–250 (1988)

    Article  Google Scholar 

  8. Cairns-Smith, A.G., Hartman, H.: Clay Minerals and the Origin of Life. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  9. Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during algorithmic self-assembly. Nano Letters 7(9), 2912–2919 (2007)

    Google Scholar 

  10. Chen, J., Reif, J.H. (eds.): DNA 9. LNCS, vol. 2943. Springer, Heidelberg (2004)

    Google Scholar 

  11. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen and Reif [10], pp. 91–107

    Google Scholar 

  12. Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi-species. Journal of Physical Chemistry 92, 6881–6891 (1988)

    Article  Google Scholar 

  13. Fu, T.-J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993)

    Article  Google Scholar 

  14. Griffith, S., Goldwater, D., Jacobson, J.M.: Self-replication from random parts. Nature 437, 636 (2005)

    Article  Google Scholar 

  15. Hariadi, R.F., Yurke, B.: Elongational-flow-induced scission of DNA nanotubes in laminar flow. Physical Review E 82(4), 046307 (2010), http://pre.aps.org/abstract/PRE/v82/i4/e046307

    Article  Google Scholar 

  16. Klavins, E.: Universal self-replication using graph grammars. In: 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS 2004), pp. 198–204 (2004)

    Google Scholar 

  17. Li, J., Browning, S., Mahal, S.P., Oelschlegel, A.M., Weissmann, C.: Darwinian evolution of prions in cell culture. Science 327(5967), 869–872 (2010)

    Article  Google Scholar 

  18. Lincoln, T.A., Joyce, G.F.: Self-sustained replication of an RNA enzyme. Science 323(5918), 1229–1232 (2009)

    Article  Google Scholar 

  19. Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. Journal of the American Chemical Society 121, 5437–5443 (1999)

    Article  Google Scholar 

  20. Markov, I.V.: Crystal Growth for Beginners. World Scientific, Singapore (2003)

    Book  Google Scholar 

  21. Mills, D., Peterson, N., Spiegelman, S.: An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proceedings of the National Academy of Sciences USA 58, 217–224 (1967)

    Article  Google Scholar 

  22. Orgel, L.E., Crick, F.H.C.: Anticipating an RNA world. Some past speculations on the origin of life: Where are they today? FASEB Journal 7, 238–239 (1993)

    Google Scholar 

  23. Rothemund, P.W.K., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D.K., Winfree, E.: Design and characterization of programmable DNA nanotubes. Journal of the American Chemical Society 126(50), 16344–16352 (2004)

    Article  Google Scholar 

  24. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLOS Biology 2, 424–436 (2004)

    Article  Google Scholar 

  25. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Symposium on Theory of Computing (STOC), pp. 459–468. ACM, New York (2000)

    Google Scholar 

  26. Schulman, R., Winfree, E.: Self-replication and evolution of DNA crystals. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 734–743. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Schulman, R., Winfree, E.: Synthesis of crystals with a programmable kinetic barrier to nucleation. Proceedings of the National Academy of Sciences USA 104(39), 15236–15241 (2007)

    Article  Google Scholar 

  28. Schulman, R., Winfree, E.: How crystals that sense and respond to their environments could evolve. Natural Computing 7, 219–237 (2008)

    Article  MathSciNet  Google Scholar 

  29. Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic self-assembly. SIAM Journal on Computation 39, 1581–1616 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Segré, D., Ben-Eli, D., Deamer, D.W., Lancet, D.: The lipid world. Origins of Life and Evolution of Biospheres 31(1-2), 119–145 (2001)

    Article  Google Scholar 

  31. Wächtersäuser, G.: Before enzymes and templates: theory of surface metabolism. Microbiology and Molecular Biology Reviews 52(4), 452–484 (1988)

    Google Scholar 

  32. Walde, P., Wick, R., Fresta, M., Mangone, A., Luisi, P.L.: Autopoetic self-reproduction of fatty acid vesicles. Journal of the American Chemical Society 116, 11649–11654 (1994)

    Article  Google Scholar 

  33. Wetmur, J.G., Fresco, J.: DNA probes: Applications of the principles of nucleic acid hybridization. Critical Reviews in Biochemistry and Molecular Biology 26(3-4), 227–259 (1991)

    Article  Google Scholar 

  34. Winfree, E.: The xgrow simulator, http://www.dna.caltech.edu/Xgrow/

  35. Winfree, E.: On the computational power of DNA annealing and ligation. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers. DIMACS, vol. 27, pp. 199–221. American Mathematical Society, Providence (1996)

    Google Scholar 

  36. Winfree, E.: Simulations of computing by self-assembly. Technical Report CS-TR:1998.22, Caltech (1998)

    Google Scholar 

  37. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error-correction for algorithmic self-assembly. In: Chen and Reif [10], pp. 126–144

    Google Scholar 

  38. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  39. Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata: An Atlas of Basin of Attraction Fields of One-Dimensional Cellular Automata. Perseus Books, Cambridge (1992)

    MATH  Google Scholar 

  40. Yin, P., Hariadi, R.F., Sahu, S., Choi, H.M.T., Park, S.H., LaBean, T.H., Reif, J.H.: Programming DNA tube circumferences. Science 321, 824–826 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulman, R., Winfree, E. (2011). Simple Evolution of Complex Crystal Species. In: Sakakibara, Y., Mi, Y. (eds) DNA Computing and Molecular Programming. DNA 2010. Lecture Notes in Computer Science, vol 6518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18305-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18305-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18304-1

  • Online ISBN: 978-3-642-18305-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics