Electromagnetic Force Transducers

  • Dan Mihai Ştefănescu


Sensing magnetic fields has evolved from ancient navigation purposes to the increasing need for improved sensitivity, smaller form factor, compatibility with modern electronic systems within airport security and structural stability [7.1].


Force Transducer Casimir Force Wheatstone Bridge Microlens Array Flux Concentrator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Magnetic Sensors – Emerging Technology. Frost & Sullivan research service, May 3 (2009),
  2. 2.
    Boll, R., Borek, L.: Magnetic sensors of new materials. SIEMENS Forschungs- und Entwicklungsberichte 10(2), 83–90 (1981)Google Scholar
  3. 3.
    Regtien, P.P.L.: Instrumentation Electronics: Basic Electronic Theory and Techniques. Prentice Hall, New York (1992)Google Scholar
  4. 4.
    Millea, A.: Book of Metrologist. General Metrology. Editura Tehnică, Bucureşti (1985) (in Romanian)Google Scholar
  5. 5.
    Webster, J.G. (Editor-in-Chief): The Measurement, Instrumentation and Sensors Handbook. CRC Press – Springer – IEEE Press, Boca Raton, FL (1999)Google Scholar
  6. 6.
    Fraden, J.: AIP Handbook of Modern Sensors – Physics, Design and Applications. American Institute of Physics, New York (1993)Google Scholar
  7. 7.
    Hauser, H., Stangl, G., Fallmann, W., Chabicovsky, R., Riedling, K.: Magnetoresistive sensors. In: Proc. Workshop on Preparation, Properties, and Applications of Thin Ferromagnetic Films, Vienna, Austria, June 15-16, pp. 15–27 (2000)Google Scholar
  8. 8.
    Zabler, E., Heintz, F.: Neue, alternative Lössungen für Drehzahlsensoren im Kraftfahrzeug auf magnetoresistiver Basis. Sensoren Technologie und Anwendung, Artikel 9.8, Bad Nauheim, Deutschland (1984)Google Scholar
  9. 9.
    Prinz, R., Charvat, R.: Sensor mit magnetoresistivem System zur Messung extrem kleiner Wegdifferenzen. In: Proc. Sensor 1988, Int’l Exhibition with Congress and Special Show for Research, Development and Application, Messezentrum Nürnberg, Deutschland, May 3-5, pp. 319–334 (1988)Google Scholar
  10. 10.
    Wecker, J.: Magnetoresistive Schichtsysteme und ihre Anwendungen. Fachver-anstaltungunterlagen “Magnetwerkstoffe für technische Anwendungen”, Haus der Technik, Aachen, Deutschland (2003)Google Scholar
  11. 11.
    Caruso, M.J., Bratland, T., Smith, C.H., Schneider, R.: A new perspective on magnetic field sensing. Honeywell International, Inc., Morristown, NJ (1998)Google Scholar
  12. 12.
    Holman, P.A.: Magnetoresistance (MR) transducers and how to use them as sensors, 1st edn. Honeywell International Inc., Morristown, NJ (2004)Google Scholar
  13. 13.
    Magnetoresistive sensors for magnetic field measurement. PDF SC17 General Magnetism, Philips Semiconductors, Eindhoven, The Netherlands, September 6 (2000)Google Scholar
  14. 14.
    Hübschmann, S., Schneider, M.: Magnetoresistive sensors – Principles of operation and applications. Zetex Semiconductors plc, Oldham, UK, Application Note 20-96Google Scholar
  15. 15.
    Schicker, R.: Master of the rings – a robust, magnetic speed measuring system with high resolution. Hotline Hottinger (2), 14–16 (2003)Google Scholar
  16. 16.
    Henjes, K.: The traction force in magnetic separators. Meas. Sci. Technol. 5, 1105–1108 (1994)CrossRefGoogle Scholar
  17. 17.
    Wen, T.-T., Hocheng, H.: Innovative rapid replication of microlens arrays using electromagnetic force-assisted UV imprinting. J. Micromech. Microeng. 19, Paper 025012 (2009)Google Scholar
  18. 18.
    UniMeasure / 80F force transducer. UniMeasure, Inc., Grants Pass/Corvalis, ORGoogle Scholar
  19. 19.
    Levins, B., Gravagne, I.: A magnetically controllable valve to vary the resistance of hydraulic dampers for exercise machines. In: Proceedings IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA, July 24-28, pp. 492–497 (2005)Google Scholar
  20. 20.
    Goodzeit, C.L., Anerella, M.D., Ganetis, G.L.: Measurement of internal forces in superconducting accelerator magnets with strain gauge transducers. In: Proc. Applied Superconductivity Conference, San Francisco, CA, August 21-25 (1988)Google Scholar
  21. 21.
    Ştefănescu, D.M.: Load cells for measuring axial loads transmitted to foundation by high voltage circuit breakers when acting. Buletinul Institutului Politehnic Bucureşti – seria Mecanică, Tom XLIII (3), 77–84 (1981) (in Romanian)Google Scholar
  22. 22.
    Augutis, V., Gailius, D., Milinskas, A.: Measurement of the shrinking force of cathode ray tube’s shrink fit rim band. In: CD Proc. XVII IMEKO World Congress on Metrology in the 3rd Millennium, Dubrovnik, Croatia, TC-15, pp. 1926–1929 (2003)Google Scholar
  23. 23.
    Liu, J., Li, X.: A piezoresistive microcantilever magnetic-field sensor with on-chip self-calibration function integrated. Microelectronics Journal 38(2), 210–215 (2007)CrossRefGoogle Scholar
  24. 24.
    Holm-Kennedy, J.W., Umemoto, D.K.: Magnetic and electric force sensing method and apparatus. US Patent 5036286 – 1990Google Scholar
  25. 25.
    Pereles, B.M., Shao, R., Tan, E.L., Ong, K.G.: A remote query pressure sensor based on magnetic higher-order harmonic fields. IEEE Sensors Journal 8(11), 1824–1829 (2008)CrossRefGoogle Scholar
  26. 26.
    Wieringa, H.: Electrical force measuring transducers. In: Proc. Symp. Force, Pressure, Displacement and Flow Sensors, May 13-14, pp. 179–197. Twente University of Technology, Enschede (1982)Google Scholar
  27. 27.
    Jäger, G.: High-speed weighing engineering. In: Proceedings 13th IMEKO TC-3 Conference on Force and Mass Measurement, Helsinki, Finland, May 11-14, pp. 230–236 (1993)Google Scholar
  28. 28.
    Usher, M.J., Keating, D.A.: Sensors and Transducers – Characteristics, Applications, Instrumentation, Interfacing, 2nd edn. MacMillan, Houndmills (1996)Google Scholar
  29. 29.
    Sawh, C.: Closing the performance gap between strain gage and electro-magnetic force restoration load cells. In: Proc. 6th APMF, Shanghai, China, November 3-6, pp. 183–188 (2003)Google Scholar
  30. 30.
    Weyhe, S.: Weighing Technology in the Laboratory: Technology and Applications. Sartorius + Verlag Moderne Industrie, Landsberg/Lech (1997)Google Scholar
  31. 31.
    Choi, I.-M., Kim, J.-H., Lee, H.-J., Kim, M.-S., Park, Y.K., Woo, S.Y., Kang, D.-I.: Development of electromagnetic probe for micro force measurement. In: CD Proc. 19th IMEKO TC-3 Int’l Conf. Force, Mass & Torque Measurements: Theory and Application in Laboratories and Industries, Cairo, Egypt, Paper 46 (2005)Google Scholar
  32. 32.
    Christenson, T.R., Klein, J., Guckel, H.: An electromagnetic microdynamometer. In: Proc. IEEE MEMS, Amsterdam, Netherlands, January 20-February 2, pp. 386–391 (1995)Google Scholar
  33. 33.
    Choi, J.-H., Choi, M.-S., Kim, M.-S., Park, Y.-K.: Magnetic flux quantum as a sub-pico-newton weight. In: Proc. Asia-Pacific Symp. Mass, Force and Torque (APMF 2005), Jeju Island, Korea, August 30-September 3, pp. 99–104 (2005)Google Scholar
  34. 34.
    Choi, J.-H., Lee, K.-C., Kim, Y.-W., Kim, M.-S.: Characterization of quantum-weight generating cantilever device. In: CD Proceedings IMEKO Int’l Conf. Cultivating Metrological Knowledge, Session 1.1, Merida, Mexico, November 27-30 (2007)Google Scholar
  35. 35.
    Choi, J.-H., Kim, M.-S., Park, Y.-K., Kim, Y.W., Kang, D.-I.: KRISS approach to pico-newton standard force realization. In: Proc. XIX IMEKO World Congress on Fundamental and Applied Metrology, Lisbon, Portugal, pp. 406–409 (2009)Google Scholar
  36. 36.
    Bao, Y., Ho, B.C.: Casimir force measurements between a sphere and a surface with high-aspect ratio, nanoscale channel arrays. American Physical Society, Ref. (March 1, 2007)Google Scholar
  37. 37.
    Casimir force simulation and nanomachines, May 6 (2009),
  38. 38.
    Nawazuddin, M.B.S., Lammerink, T.S.J., Wiegerink, R.J., Elwenspoek, M.C.: Measurement setup for detecting the Casimir force between parallel plates separated at a sub-micron distance. J. Micromech. Microeng. 20, Paper 064005 (June 2010)Google Scholar
  39. 39.
    Hull, J.R., Komori, M.: High levitation pressures with cage-cooled superconductors. Supercond. Sci. Technol. 15(5), 763–768 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dan Mihai Ştefănescu

    There are no affiliations available

    Personalised recommendations