Piezoelectric Force Transducers (PZFTs)

  • Dan Mihai Ştefănescu


The first demonstration of the direct piezoelectric effect was in 1880 by the brothers Pierre and Jacques Curie as a phenomenon where electric dipole (developing potential difference) is generated in anisotropic natural crystals subjected to mechanical stress. Woldemar Voigt’s Lehrbuch der Kristallphysik (Textbook on Crystal Physics), published in 1910, describes the 20 natural crystal classes which are capable of piezoelectricity, and rigorously defines the piezoelectric constants using tensorial analysis.


Force Transducer Piezoelectric Transducer Carbon Fiber Reinforce Polymer Piezoelectric Crystal Charge Amplifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    How to select a force sensor. Kistler Instrument Corporation, Amherst, NY, Catalogue KI 6.001e – 99Google Scholar
  2. 2.
    Seippel, R.G.: Transducers, Sensors & Detectors. Prentice Hall (Reston Publishing Company), Reston, VI (1983)Google Scholar
  3. 3.
    Wieringa, H.: Electrical force measuring transducers. In: Proc. Symposium Force, Pressure, Displacement and Flow Sensors, May 13-14, pp. 179–197. Twente University of Technology, Enschede (1982)Google Scholar
  4. 4.
    Fraden, J.: Handbook of Modern Sensors – Physics, Design and Applications, 3rd edn. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Novel piezoelectric crystals for sensor applications. Cordis focus – RTD Results Supplement, No. 68, p. 44, offer ID 3491 (December 2007); ISSN 1025-4013Google Scholar
  6. 6.
    Janiczek, T.: Analysis of PVDF transducer signals stimulated by mechanical tension. Journal of Electrostatics 51-52, 167–172 (2001)CrossRefGoogle Scholar
  7. 7.
    Paajanen, M., Lekkala, J., Kirjavainen, K.: Electro-Mechanical Film (EMFi) – A new multipurpose electret material. Sensors and Actuators 84, 95–102 (2000)CrossRefGoogle Scholar
  8. 8.
    Evreinov, G., Raisamo, R.: One-directional position-sensitive force transducer based on EMFi. Sensors and Actuators A: Physical 123-124(C), 204–209 (2005)Google Scholar
  9. 9.
    Shen, Y., Xi, N., Lai, K.W.C., Li, W.J.: A novel PVDF microforce/force rate sensor for practical applications in micromanipulation. Sensor Review (Emerald Group Publishing Limited) 24(3), 274–283 (2004)Google Scholar
  10. 10.
    Hu, N., Fukunaga, H., Matsumoto, S., Yan, B., Peng, X.H.: An efficient approach for identifying impact force using embedded piezoelectric sensors. Int’l Journal of Impact Engineering 34(7), 1258–1271 (2007)CrossRefGoogle Scholar
  11. 11.
    Strittmatter, R.P., Beach, R.A., Picus, G.S., McGill, T.C.: Piezoelectrically enhanced capacitive strain sensors using GaN metal-insulator-semiconductor diodes. Journal of Applied Physics 94(9), 5958–5963 (2003)CrossRefGoogle Scholar
  12. 12.
    Wang, X., Zhou, J., Song, J., Liu, J., Xu, N., Wang, Z.L.: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters 6(12), 2768–2772 (2006)CrossRefGoogle Scholar
  13. 13.
    Wang, Z.L.: The new field of nanopiezotronics. materialstoday 10(5), 20–28 (2007)Google Scholar
  14. 14.
    Repass, R.: Sensor sense: piezoelectric force sensors. Internet, February 7 (2009)Google Scholar
  15. 15.
    Ionescu, G., Dobrescu, R., Droaşcă, B., Guţu, A., Hohan, I.: Transducers for Industrial Automatization, vol. I. Editura Tehnică, Bucureşti (1988) (in Romanian)Google Scholar
  16. 16.
    What is the general principle of a force transducer?,; Crown Copyright 2003. (reproduced by permission of the Controller of HMSO)
  17. 17.
    Ou, G., Widdowson, G.P., Shing, K., Kwan, K.: Force sensing apparatus. US Patent 6425514, July 30 (2002)Google Scholar
  18. 18.
    Ştefănescu, D.M.: Equipment for mobility and mechanical impedance measurement. Studii şi cercetări de mecanică aplicată, Tom 41(4), 501–513 (1982) (in Romanian)Google Scholar
  19. 19.
    Introduction to piezo transducers. Piezo Systems, Inc., Cambridge, July 21 (2006)Google Scholar
  20. 20.
    Park, J., Moon, W.: A hybrid-type micro-gripper with an integrated force sensor. Microsystem Technologies 9(8), 511–519 (2004)CrossRefGoogle Scholar
  21. 21.
    Rogallo, V.L., Jenkins, R.S., Deboo, G.J.: A piezoelectric transducer for measuring cardiac and gross motor activity of small organisms. NASA Tech. Note D-4590/68Google Scholar
  22. 22.
    Gautschi, G.H.: Piezoelectric Sensorics. Springer, Berlin (2005)Google Scholar
  23. 23.
    Zhou, W., Khaliq, A., Tang, Y., Ji, H., Selmic, R.: Simulation and design of piezoelectric microcantilever chemical sensor. Sensors and Actuators A: Physical 125(1), 69–75 (2005)CrossRefGoogle Scholar
  24. 24.
    Kim, S.-J., Lee, C.-W.: On-line identification of current and position stiffness by LMS algorithm in active magnetic bearing system equipped with force transducers. Mechanical Systems and Signal Processing 13(5), 681–690 (1999)CrossRefGoogle Scholar
  25. 25.
    Platil, A.: Mechatronics Sensors. PPT-05-force-b on Internet, January 3 (2005)Google Scholar
  26. 26.
    Cuscó, L. (Coord.): Guide to the Measurement of Pressure and Vacuum. The Institute of Measurement and Control, London, UK (published 1998)Google Scholar
  27. 27.
    Hunt, A. (Coord.): Guide to the Measurement of Force. The Institute of Measurement and Control, London, UK (published 1998)Google Scholar
  28. 28.
    Rosochowski, A.: Technical feasibility of a three-axis force transducer for measuring pressure and friction on the model die surface – ptototype development. Journal of Material Processing Technology 115, 192–204 (2001)CrossRefGoogle Scholar
  29. 29.
    Schewe, G., Steinhoff, C.: Force measurements on a circular cylinder in a cryogenic Ludwieg-Tube using piezoelectric transducers. Experiments in Fluids 42(3), 489–494 (2007)CrossRefGoogle Scholar
  30. 30.
    Munschauer, P.: High sensitivity force sensors for dynamic biomedical tissue product testing. On-line Magazine ’Sensors & Transducers’ (S&T e-Digest) 64(2) (February 2006)Google Scholar
  31. 31.
    Cristofolini, L., Marchetti, A., Cappello, A., Viceconti, M.: A novel transducer for the measurement of cement-prosthesis interface forces in cemented orthopaedic devices. Medical Engineering & Physics 22, 493–501 (2000)CrossRefGoogle Scholar
  32. 32.
    van Zoest, G.G.J.M., van den Berg, H.T.C.M., Holtkamp, F.C.: Three-dimensionality of contact forces during clinical manual examination and treatment: A new measuring system. Clinical Biomechanics 17, 719–722 (2002)CrossRefGoogle Scholar
  33. 33.
    Stere, R.: Electronic Apparatus for Measurement and Control. Editura Didactică şi Pedagogică, Bucureşti (1968) (in Romanian)Google Scholar
  34. 34.
    Kursu, O., Kruusing, A., Pudas, M., Rahkonen, T.: Piezoelectric bimorph charge mode force sensor. Sensors and Actuators A: Physical 153(1), 42–49 (2009)CrossRefGoogle Scholar
  35. 35.
    Lim, C., Choi, S.B.: Vibration control of an HDD disk-spindle system using piezoelectric bimorph shunt damping. Smart Materials and Structures 16, 901–908 (2007)CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Andò, B., Giannone, P., Graziani, S., Pitrone, N.: Measurement system for the characterization of piezoelectric bimorphs. In: CD Proc. 19th IMEKO TC-3 Int’l Conf. Force, Mass & Torque Measurements: Theory and Application in Laboratories and Industries, Paper 14, Cairo, Egypt, February 19-23 (2005)Google Scholar
  38. 38.
    Hou, X.: A bimorph moment / force actuator for dynamic testing. Sensors and Transducers Journal 108(9), 128–138 (2009)Google Scholar
  39. 39.
    Baglio, S., Muscato, G., Savalli, N.: Tactile measuring systems for the recognition of unknown surfaces. IEEE Transactions on Instrumentation and Measurement 51(3), 522–528 (2002)CrossRefGoogle Scholar
  40. 40.
    Stewart, A.M.: The use of piezoelectric bimorphs to measure forces in colloidal systems. Meas. Sci. Technol. 6, 114–123 (1995)CrossRefGoogle Scholar
  41. 41.
    Hunt, B., Noca, F., Hoenk, M.: Carbon nanotube bimorph actuators and force sensors. NASA Tech Briefs NPO-21153, Pasadena, CA, October 3 (2005)Google Scholar
  42. 42.
    Lekkala, J., Tuppurainen, J., Paajanen, M.: Material and operational properties of large-area membrane type sensors for smart environments. In: CD Proc. XVIIth IMEKO World Congress Metrology in the 3rd Millenium, Cavtat-Dubrovnik, Croatia, June 22-27, pp. 2045–2048 (2003)Google Scholar
  43. 43.
    Mack, O.: A new calibration method with static loads for piezoelectric force transducers. In: Proc. XVIII IMEKO World Congress on Metrology for a Sustainable Development, Rio de Janeiro, Brazil, September 17-22, Paper 22 (2006)Google Scholar
  44. 44.
    Hjelmgren, J.: Dynamic measurement of force – a literature survey Swedish National Testing and Research Institute, Boras, Sweden, SP Report 27 (2002)Google Scholar
  45. 45.
    Isarakorn, D., Linder, M., Briand, D., de Rooij, N.F.: Evaluation of static measurement in piezoelectric cantilever sensors  using a charge integration technique for chemical and biological detection. Meas. Sci. Technol. 21, Paper 075801 (June 2010)Google Scholar
  46. 46.
    PACEline CMC – Piezoelectric force measurement chain (June 2009),
  47. 47.
    Korenman, Y.I., Kiselyov, A.A., Kadantsev, A.V.: Quartz generator effect on accuracy characteristics of mass-sensitive sensors. Sensors and Systems Journal (1) (January 2005) (in Russian)Google Scholar
  48. 48.
    Kalach, A.V., Ryzhkov, V.V., Sitnikov, A.I.: Active oscillators for piezoelectric microweighing in liquid media. Idem (2) (February 2005)Google Scholar
  49. 49.
    The Piezo Force Module for electromechanical measurements. Asylum Research – Atomic Force Microscopes, Santa Barbara, CA, PDF Data Sheet 27, April 9 (2009)Google Scholar
  50. 50.
    Alexe, M., Gruverman, A. (eds.): Nanoscale Characterisation of Ferroelectric Materials. Scanning Probe Microscopy Approach. Springer, Berlin (2004)Google Scholar
  51. 51.
    Raman Suri, C.: Quartz crystal based microgravimetric immunobiosensors. Sensors & Transducers 66(4), 543–552 (2006); ISSN 1726-5479Google Scholar
  52. 52.
    Wang, H., Wang, C., et al.: A novel biosensing interfacial design produced by assembling nano-Au particles on amine-terminated plasma-polymerized films. Analytical and Bioanalytical Chemistry 377(4), 632–638 (2003)CrossRefGoogle Scholar
  53. 53.
    Patel, N., Huebner, J., Saredy, J., Stadelmaier, B.: Odor sensing with indium tin oxide thin films on quartz crystal microbalance. Sensors & Transducers Journal 91(4), 116–126 (2008)Google Scholar
  54. 54.
    Mack, O.: Investigations of piezoelectric force measuring devices for use in legal weighing metrology. In: CD Proc. 19th IMEKO TC-3 Int’l Conf. Force, Mass & Torque Measurements: Theory and Application in Laboratories and Industries, Cairo, Egypt, February 19-23, Paper 28 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dan Mihai Ştefănescu

    There are no affiliations available

    Personalised recommendations