Advertisement

Capacitive Force Transducers

  • Dan Mihai Ştefănescu

Abstract

Resistive and capacitive transducers are the most spread in force measurements. Following some estimations, more than 30 % of modern transducers are direct or indirect applications of the RC sensing principles [5.1]. Capacitive transducers are the most precise of all electrical ones and are known for their extremely high sensitivity and resolution, large bandwidth, robustness, stability, and drift-free measurement capability. They can be used in severe environments (high temperature, magnetic fields, and radiation) as well as in various non-contact or nonintrusive applications.

Keywords

Cantilever Beam Electrostatic Force Capacitive Sensor Capacitive Transducer Fluid Compressibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Du, W.Y., Yelich, S.W.: Resistive and capacitive based sensing technologies. Sensors & Transducers Journal 90, 100–116 (2008)Google Scholar
  2. 2.
    Platil, A.: Mechatronics sensors: Measurement of position. position-c-bw.ppt, November 11 (2004)Google Scholar
  3. 3.
    Chappell, P.H., Elliott, J.A.: Contact force sensor for artificial hands with a digital interface for a controller. Measurement and Science Technology 14, 1275–1279 (2003)CrossRefGoogle Scholar
  4. 4.
    Cuscó, L. (Coord.): Guide to the Measurement of Pressure and Vacuum. The Institute of Measurement and Control, London, UK (Published 1998)Google Scholar
  5. 5.
    Bethe, K.: Dynamometrical sensors: (Many) problems (some) solutions. Sensors and Actuators A: Physical 26(1-3), 285–293 (1991)CrossRefGoogle Scholar
  6. 6.
    Schucht, C.: Capacitive pressure transducer with electrostatic compensation of displacement. VDI/VDE – Fachtagung Sensoren, VDI-Berichte No. 677, p. 119, Bad Nauheim, F.R.G (1986)Google Scholar
  7. 7.
    Doemens, G., Spriegel, D., Wünsche, H.: Microsystem for capacitive force and torque measurement. VDI-Berichte Nr. 1685, pp. 411–415 (2002)Google Scholar
  8. 8.
    Cabiati, F., Nerino, R., Clari, F., Giaretto, V., Miraldi, E., Ruscica, G.: Multiple dynamometer for hostile atmosphere based on differential capacitive transducers. In: Proc. XIIIth IMEKO World Congress, Turin, Italy, September 5-9, vol. III, pp. 1899–1903 (1994)Google Scholar
  9. 9.
    Hjelmgren, J.: Dynamic measurement of force – a literature survey. Swedish National Testing and Research Institute, Boras, Sweden, SP Report 27 (2002); ISBN 91-7848-918-0Google Scholar
  10. 10.
    Meckes, A., Aigner, R., Dorfinger, G., Wachutka, G.: Capacitive silicon micro-sensor for force and torque measurement. In: Int’l Conf. Transducers XI and Eurosensors XV, Munich, Germany, June 10-14, Paper 2A3.05 (2001)Google Scholar
  11. 11.
    Enikov, E.T., Nelson, B.J.: MEMS based single cell penetration force sensor. In: SPIE Conf. Microrobotics and Microassembly, Boston, MA, vol. 3834, pp. 40–46 (September 1999)Google Scholar
  12. 12.
    Arshak, A., Arshak, K., Morris, D., Korostynska, O., Jafer, E.: Investigation of TiO2 thick film capacitors for use as strain gauge sensors. Sensors and Actuators A: Physical 122(2), 242–249 (2005)CrossRefGoogle Scholar
  13. 13.
    Wiegerink, R., Mateman, R., Zwijze, R., Krijnen, G., Lammerink, T., Elwenspoek, M.: Quasi monolithic silicon load cell for loads up to 1000 kg with distributed capacitive sensing. In: Proc. 13th European Conf. on Solid-State Transducers, The Hague, The Netherlands, September 12-15, pp. 545–546 (1999)Google Scholar
  14. 14.
    Elwenspoek, M., Wiegerink, R.: Mechanical Microsensors. Springer, Heidelberg (2001)Google Scholar
  15. 15.
    Pavlenko, V.A., et al.: Capacitive transducers in test equipment. In: Proc. 3rd Conf. on Testing Equipment for Experimental Investigations of Mechanical Properties of Materials and Structures, Moscow, Soviet Union, October 9-14, vol. 1, pp. 543–552 (1989)Google Scholar
  16. 16.
    Ştefănescu, D.M., Mănescu, T.: Differential capacitive transducer for measuring fluid compressibility. Instrumentaţia VII(6), 24 (1998) (in Romanian)Google Scholar
  17. 17.
    Burmen, M., Pernus, F., Likar, B.: High-speed precision weighing of pharmaceutical capsules. Meas. Sci. Technol. 20, Paper 115203 (2009)Google Scholar
  18. 18.
    Procter, E., Strong, J.T.: Capacitance strain gauges. In: Window, A.L., Holister, G.S. (eds.) Strain Gage Technology. Elsevier Applied Science, London (reprinted 1989)Google Scholar
  19. 19.
    Pratt, J.R., Kramar, J.A.: SI realization of small forces using an electrostatic force balance. In: CD Proc. XVIII IMEKO World Congress on Metrology for a Sustainable Development, Rio de Janeiro, Brazil, September 17-22, Paper 109 (2006)Google Scholar
  20. 20.
    Sze, S.M.: Semiconductor Sensors. John Wiley & Sons, Inc., Chichester (1994)Google Scholar
  21. 21.
    Kim, M.-S., Choi, I.-M., Park, Y.-K., Choi, J.-H., Kim, J.-H.: Characterizing Atomic Force Microscope cantilevers using a precision balance. In: Proc. Asia-Pacific Symp. Mass, Force and Torque (APMF 2005), Jeju Island, Korea, pp. 89–94 (2005)Google Scholar
  22. 22.
    Nesterov, V.: Facility and methods for the measurement of micro and nano forces in the range below 10− 5 N with a resolution of 10− 12 N (development concept). Meas. Sci. Technol. 18, 360–366 (2007)CrossRefGoogle Scholar
  23. 23.
    Test of a new electrostatic nanoforce measuring principle. PTB, Micro- and Nano-force Metrology Internet, May 12 (2008)Google Scholar
  24. 24.
    Brand, U.: Measuring nano- and picoforces. PTB News – Metrology, Technology, Services, Cooperation, p. 1, Bulletin 08.3Google Scholar
  25. 25.
    Chen, S.-J., Pan, S.-S.: Nanonewton force generation and detection based on a sensitive torsion pendulum. IEEE Transactions on Instrumentation and Measurement 58(4), 897–901 (2009)CrossRefGoogle Scholar
  26. 26.
    Karafyllidis, I.G., Lagoudas, D.C.: Microtubules as mechanical force sensors. BioSystems 88(1-2), 137–146 (2007)CrossRefGoogle Scholar
  27. 27.
    Yu, N., Bonin, W.A., Polycarpou, A.A.: High-resolution capacitive load-displacement transducer and its application in nanoindentation and adhesion force measurements. Review of Scientific Instruments 76 (April 2005)Google Scholar
  28. 28.
    Nishijima, T., Yamamoto, A., Higuchi, T.: A flexible sensor measuring displacement and bending. Meas. Sci. Technol. 20, Paper 045205 (2009)Google Scholar
  29. 29.
    Zhao, H., Castle, G.S.P., Inculeţ, I.I.: The measurement of bipolar charge in polydisperse powders using a vertical array of Faraday pail sensors. Journal of Electrostatics 55, 261–278 (2002)Google Scholar
  30. 30.
    Roncin, A., Shafai, C., Swatek, D.R.: Electric field sensor using electrostatic force deflection of a micro-spring supported membrane. Sensors and Actuators A: Physical 123-124(C), 179–184 (2005)Google Scholar
  31. 31.
    Kawamoto, H., Umezu, S.: Force at spark discharge in pin-to-plate system. Journal of Electrostatics 65(2), 75–81 (2007)CrossRefGoogle Scholar
  32. 32.
    Ionescu, G., Dobrescu, R., Droaşcă, B., Guţu, A., Hohan, I.: Transducers for Industrial Automatization, Vol. I, Editura Tehnică, Bucureşti (1988) (in Romanian)Google Scholar
  33. 33.
    Martenson, S.: Capacitance-to-digital converter simplifies instrumentation and sensor design. Sensors & Transducers e-Digest 59(9) (September 2005)Google Scholar
  34. 34.
    Restagno, F., Crassous, J., Charlaix, E., Monchanin, M.: A new capacitive sensor for displacement measurement in a surface-force apparatus. Meas. Sci. Technol. 12, 16–22 (2001)CrossRefGoogle Scholar
  35. 35.
    Harish, D.: CS-series of integrated load sensors based on innovative capacitive sensing technology. Sensors & Transducers e-Digest: Product News 69(7) (July 2006)Google Scholar
  36. 36.
    Peng, P., Sezen, A.S., Rajamani, R., Erdman, A.G.: Novel MEMS stiffness sensor for force and elasticity measurements. Sensors and Actuators A: Physical 158(1), 10–17 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dan Mihai Ştefănescu

    There are no affiliations available

    Personalised recommendations