Resistive Force Transducers

  • Dan Mihai Ştefănescu


The most common method to measure force relies on resistive sensing. The advantages of resistive sensors are their reliability, simple construction, adjustable resolution, and maintenance-free technology. Electrical resistance is also the easiest electrical property to measure precisely over a wide range at moderate cost. These important features have often made resistive sensors the preferred choice in sensor designs [3.1].


Strain Gauge Force Sensor Force Transducer Gauge Factor Wheatstone Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Du, W.Y., Yelich, S.W.: Resistive and capacitive based sensing technologies. Sensors & Transducers Journal 90, 100–116 (2008)Google Scholar
  2. 2.
    Dally, J.W., Riley, W.F., McConnell, K.G.: Instrumentation for Engineering Measurements. John Willey & Sons, Inc., New York (1993)Google Scholar
  3. 3.
    Doebelin, E.O.: Measurement Systems: Application and Design. McGraw-Hill Book Company, New York (1966)Google Scholar
  4. 4.
    Neubert, H.K.P.: Instrument Transducers – An Introduction to Their Performance and Design. Clarendon Press, Oxford (1975)Google Scholar
  5. 5.
    Norton, H.N.: Handbook of Transducers for Electronic Measuring Systems. Prentice Hall, Inc., Englewood Cliffs (1969)Google Scholar
  6. 6.
    Stere, R.: Electronic Apparatus for Measurement and Control. Editura Didactică şi Pedagogică, Bucureşti (1968) (in Romanian)Google Scholar
  7. 7.
    Ştefănescu, D.M.: Resistive transducers utilized in machine-building. In: Proc. 4th Conf. Vibration in Machine Design, Timişoara, vol. 4, pp. 297–304 (1982) (in Romanian)Google Scholar
  8. 8.
    Ştefănescu, D.M.: Resistive force transducers for testing in aeronautical industry. Rev. Transp. şi Telecom XIII(2), 26–31 (1986) (in Romanian)Google Scholar
  9. 9.
    Webster, J.G. (Editor-in-Chief): The Measurement, Instrumentation and Sensors Handbook. CRC Press – Springer – IEEE Press, Boca Raton, FL (1999)Google Scholar
  10. 10.
    Sheingold, D.H. (ed.): Transducer Interfacing Handbook. A Guide to Analog Signal Conditioning, Analog Devices, Norwood, MA (1980)Google Scholar
  11. 11.
    Unimeasure/80 – A multipurpose transducer (US Patent 3842385). Unimeasure, Inc., Grants Pass, OR (1986)Google Scholar
  12. 12.
    Haug, A.: Übersicht über die Dehnung verschiedener Körperformen bei Belastung. Reprint Hottinger Baldwin Messtechnik GmbH, Darmstadt, 2–68Google Scholar
  13. 13.
    FlexiForce. Sensing solutions for the 21st century. Tekscan Inc., South Boston, MA, Technical Data Sheet Model A 101-98Google Scholar
  14. 14.
    Perry, C.C., Starr, J.E., Weidner, J.R.: Modern strain transducers: their design and construction. In: Hannah, R.L., Reed, S.E. (eds.) Strain Gage Users’ Handbook, SEM Edition (1992); ISBN 0-912053-36-4Google Scholar
  15. 15.
    Kraftaufnehmer Produkt Information. Hellige–Fabrik wissenschaftlicher Apparate, Freiburg im Breisgau, Bundesrepublik Deutschland (1977)Google Scholar
  16. 16.
    Solid state transducer technology short form catalog. Kulite Semiconductor Products, Inc., Ridgefield, N.J., Bulletin SF-1C-88Google Scholar
  17. 17.
    Window, A.L., Holister, G.S.: Strain Gage Technology. Elsevier Applied Science, London, New York (reprinted 1989)Google Scholar
  18. 18.
    Load cells, weighing equipment & systems. Kubota Corporation, Osaka, Japan, Catalog 1102-99Google Scholar
  19. 19.
    Henning, W.: Mikroelektronik-Sensoren. Vortrages anläßlich des 3. Kolloquiums der Österreichischen Tribologischen Gesellschaft, pp. 3-15. Siemens, München (1981)Google Scholar
  20. 20.
    Sarro, P.M., van Herwaarden, A.W.: Silicon cantilever beams fabricated by electro-chemically controlled etching for sensor applications. J. Electrochem. Society 133, 1724–1729 (1986)CrossRefGoogle Scholar
  21. 21.
    Middelhoek, S., Audet, S.A.: Silicon sensors: full of promises and pitfalls. J. Phys. E: Sci. Instrum. 20, 1080–1086 (1987)CrossRefGoogle Scholar
  22. 22.
    Low power ‘Set and Lock’ digital pots. Winbond Electronics Corporation America. In: Europe Electronics Express, Info Card 1421, San Jose, CA (May 2003)Google Scholar
  23. 23.
    Leinonen, M., Juuti, J., Jantunen, H.: Interface circuit for resistive sensors utilizing digital potentiometers. Sensors and Actuators A: Physical 138(1), 97–104 (2007)CrossRefGoogle Scholar
  24. 24.
    Popescu, A., Mocanu, D.R., Ştefănescu, D.M.: Historical aspects of using resistive strain gages for producing load cells in Romania. In: History of strain gages, brittle coatings and loadcells – Retrospection in 19 countries at 50-year Jubilee, preprints IMEKO, Houston, Texas, October 19, pp. 209–213 (1988)Google Scholar
  25. 25.
    Elektrische Geräte für Messung von Kraft, Masse und Länge (Position). Swema, Stockholm, Sweden, Katalog T. Scholar
  26. 26.
    Bonfig, K.W., Bartz, W.J., Wolf, J.: Sensoren und Meβaufnehmer. Neue Verfahren und Produkte für die Praxis. Expert Verlag, Grafenau, Deutschland (1988)Google Scholar
  27. 27.
    Northrop, R.B.: Introduction to Instrumentation and Measurements. CRC Press, Boca Raton (1997)Google Scholar
  28. 28.
    Ştefănescu, D.M.: Strain gauge transducers for measurements in Electrotechnics and Energetics. Revue Roumaine de Sciences Techniques – série Électrotechnique et Énergétique, Tome 32(4), 413-418 (1987)Google Scholar
  29. 29.
    Mocanu, D.R., Bârsănescu, P.D., Ştefănescu, D.M.: How to select the strain gauge to minimize the measurement error due to the integration tendency. In: Proc. 9th Int’l Conf. Experimental Mechanics, Copenhagen, Denmark, vol. 1, pp. 326–332 (1990)Google Scholar
  30. 30.
    Ştefănescu, D.M., Ştefănescu, V.: Strain gauge force transducers. In: Abstracts European Conference Junior - Euromat, Lausanne, Switzerland, pp. 442–443 (1992)Google Scholar
  31. 31.
    Ştefănescu, D.M., Mănescu, T., Ion, I.: Strain gauges emplacement possibilities for force/torque transducers in Robotics. In: Proceedings IMEKO XV World Congress Measurement to Improve the Quality of Life in the 21st Century, Osaka, Japan, June 13-18, vol. 10, pp. 117–124 (1999)Google Scholar
  32. 32.
    Ştefănescu, D.M., Marinescu, A.: Strain gauged elastic elements for measuring large forces in Mechatronics. In: Proceedings 3rd IFAC Symposium on Mechatronic Systems, Sydney, Australia, September 6-8, pp. 439–444 (2004)Google Scholar
  33. 33.
    Ştefănescu, D.M.: Strain gauged elastic elements for force and related quantities measurement. In: CD Proc. IMEKO Int’l Conf. on Cultivating Metrological Knowledge, Merida, Mexico, November 27-30, Paper 22 (2007)Google Scholar
  34. 34.
    Oppermann, K.: Force sensor with metal measuring grid transverse to the lines of force. In: Proc. Xth IMEKO World Congress, Prague, Czech, Paper 358 (1985)Google Scholar
  35. 35.
    Löffler, E., Siewert, C., Ascher, C.: Manganin thin fim sensor for force sensing. Surface and Coatings Technology 174-175, 1287–1292 (2003)CrossRefGoogle Scholar
  36. 36.
    Ravary, B., Pourcelot, P., Bortolussi, C., Konieczka, S., Crevier-Denoix, N.: Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clinical Biomechanics 19, 433–447 (2004)CrossRefGoogle Scholar
  37. 37.
    Youdin, M., Reich, T.: Mercury-in-rubber (Whitney) strain gauge. Annals of Biomedical Engineering 4(3), 220–231 (1976) by SpringerLink Netherlands, March 24 (2007)CrossRefGoogle Scholar
  38. 38.
    Cheung, Y.-N., Zhu, Y., Cheng, C.-H., Chao, C., Leung, W.F.: A novel fluidic strain sensor for large strain measurement. Sensors and Actuators A: Physical 147(2), 401–408 (2008)CrossRefGoogle Scholar
  39. 39.
    Hjelmgren, J.: Dynamic measurement of force – A literature survey Swedish National Testing and Research Institute, Boras, SP Report 27 (2002)Google Scholar
  40. 40.
    Chopra, K.L., Kaur, I.: Thin Film Device Applications. Plenum, New York (1983)Google Scholar
  41. 41.
    Cuscó, L. (Coord.) : Guide to the Measurement of Pressure and Vacuum. The Institute of Measurement and Control, London (published 1998); ISBN 0-904457-29-XGoogle Scholar
  42. 42.
    van Putten, A.F.P.: Electronic Measurement Systems. Prentice Hall, New York (1988)Google Scholar
  43. 43.
    Druzhinin, A.A., Maryamova, I.I., Kutrakov, A.P., Pavlovsky, I.V.: On the possibility to create high-sensitive piezoresistive mechanical sensors for cryogenic temperatures. Sensors and Systems Journal (7) (July 2005) (in Russian)Google Scholar
  44. 44.
    Stuchebnikov, V.M.: SOS strain gauge sensors for force and pressure transducers (December 2004),
  45. 45.
    Shamrakov, A.L., Timofeev, V.A.: Force transducers for space-rocket technologies. Sensors and Systems Journal (9) (September 2005) (in Russian)Google Scholar
  46. 46.
    Mokrov, E.A., Vasiliev, V.A., Belozubov, E.M.: Application of systemology elements for minimizing the effect of destabilizing factors on thin-film tensoresistive sensors. Sensors and Systems Journal (3) (March 2005) (in Russian)Google Scholar
  47. 47.
    Zwijze, R.A.F., Wiegerink, R.J., Krijnen, G.J.M., Lammerink, T.S.J., Elwenspoek, M.: Low-cost piezoresistive silicon load cell independent of force distribution. J. Micromech. Microeng. 10, 200–203 (2000)CrossRefGoogle Scholar
  48. 48.
    Cheeke, D.: Sensor signal conditioning. Sensors & Transducers 82(8), 1381–1388 (2007)Google Scholar
  49. 49.
    Devenyi, A., Gheorghiu, A., Belu, A., Korony, K.: Electrical transport and structure of vacuum deposited carbon films. In: Proc. Physics & Chemistry of Semi-conductors Conference, Budapest, Hungary, pp. 11–17 (November 1970)Google Scholar
  50. 50.
    Biehl, S., Lüthje, H., Bandorf, R.: Novel force sensor based on hard Diamond-like-Carbon films. In: Abstracts 16th European Conf. on Solid-State Transducers, Prague, Czech Republic, September 15-18, vol. 2, pp. 427–428 (2002)Google Scholar
  51. 51.
    Peiner, E., Tibrewala, A., Bandorf, R., Biehl, S., Lüthje, H., Doering, L.: Micro force sensor with piezoresistive amorphous carbon strain gauge. Sensors and Actuators A: Physical 130-131, 75–82 (2006)CrossRefGoogle Scholar
  52. 52.
    Peiner, E., Tibrewala, A., Lüthje, H., Bandorf, R., Biehl, S., Doering, L.: Piezoresitive diamond-like carbon micro strain gauges. In: CD Proc. XVIII IMEKO World Congress on Metrology for a Sustainable Development, Rio de Janeiro, Brazil, September 17-22, Paper 426 (2006)Google Scholar
  53. 53.
    Li, X., Levy, C., Elaadil, L.: Multiwalled carbon nanotube film for strain sensing. Nanotechnology 19(4) (2008)Google Scholar
  54. 54.
    Li, Y., Qiu, X.M., Yang, F., Wang, X.-S., Yin, Y.: Ultra-high sensitivity of super carbon-nanotube-based mass and strain sensors. Nanotechnology 19, Paper 165502 (2008)Google Scholar
  55. 55.
    Papakostas, T.V., White, N.M.: The effect of blending polymer thick-film resistors with elastomers on the force sensitivity of the films. In: Abstracts of Eurosensors XIV, Copenhagen, Denmark, August 27-30, pp. 293–294 (2000); ISBN 87-89935-51-9Google Scholar
  56. 56.
    Fraden, J.: AIP Handbook of Modern Sensors – Physics, Design and Applications. American Institute of Physics, New York (1993)Google Scholar
  57. 57.
    Urry, S.: Plantar pressure-measurement sensors (review article). Measurement Science and Technology 10, R16–R32 (1999)CrossRefGoogle Scholar
  58. 58.
    Tang, H.: Multilevel input system. Int. J. Human-Computer Studies 54, 495–507 (2001)CrossRefGoogle Scholar
  59. 59.
    Stiehl, W.D., Lieberman, J., Breazeal, C., Basel, L., Lalla, L., Wolf, M.: Design of a therapeutic robotic companion for relational, affective touch. In: Proc. IEEE Int’l Workshop on Robots and Human Interactive Communication, pp. 408–415. MIT Media Lab, Cambridge, MA (2005)CrossRefGoogle Scholar
  60. 60.
    Lowe, M., King, A., Lovett, E., Papakostas, T.: Flexible force sensors – In touch with modern technology. Sensors online (June 2004),
  61. 61.
    Bachus, K.N., DeMarco, A.L., Judd, K.T., Horwitz, D.S., Brodke, D.S.: Measuring contact area, force, and pressure for bioengineering applications: Using Fuji Film and TekScan systems. Medical Engineering & Physics 28, 483–488 (2006)CrossRefGoogle Scholar
  62. 62.
    Choi, H.-S., Park, Y.J., Lee, S.M., Kim, K.-M.: Functional characteristics of a new electrolarynx ‘Evada’ having a force sensing resistor sensor. Journal of Voice 15(4), 592–599 (2001)CrossRefGoogle Scholar
  63. 63.
    FlexiForce®, the leader in standard & custom OEM force sensing solutions. Tekscan, Inc., South Boston, MA, PDF on Internet (created on November 17, 2006)Google Scholar
  64. 64.
    Sieber, A., Valdastri, P., Houston, K., Menciassi, A., Dario, P.: Flip chip micro-assembly of a silicon triaxial force sensor on flexible substrates. Sensors and Actuators A: Physical 142(1), 421–428 (2008)CrossRefGoogle Scholar
  65. 65.
    Nikonovas, A., Harrison, A.J., Hoult, S., Sammut, D.: The application of force-sensing resistor sensors for measuring forces developed by the human hand. Proc. Inst. Mech. Eng. [H] 218(2), 121–126 (2004)Google Scholar
  66. 66.
    Yabuki, A., Baghbanan, M.R., Spelt, J.K.: Contact forces and mechanisms in a vibratory finisher. Wear 252, 635–643 (2002)CrossRefGoogle Scholar
  67. 67.
    Gassmann, O., Meixner, H. (eds.): Sensors in Intelligent Buildings, vol. 2. C. 3.4.4. Wiley-VCH Verlag, Weinheim (2001)Google Scholar
  68. 68.
    Nunes, A., Piedade, M., Neves, R.: Cost effective immersive room with pressure sensing floor. In: CD Proc. IMEKO Int’l Conf. Cultivating Metrological Knowledge, Merida, Mexico, November 27-30, Paper 71 (2007)Google Scholar
  69. 69.
    Huang, C.-T., Shen, C.-L., Tang, C.-F., Chang, S.-H.: A wearable yarn-based piezoresistive sensor. Sensors and Actuators A: Physical 141(2), 396–403 (2008)CrossRefGoogle Scholar
  70. 70.
    Wijesiriwardana, R., Dias, T., Mukhopadhyay, S.: Resistive fibre-meshed transducer. In: Proc. 7th IEEE Int’l Symp. on Wearable Computers, ISWC 2003 (February 2006)Google Scholar
  71. 71.
    Haverty, C., Fildes, G.: Enhancing computer game joysticks with smart force transducers. Sensors Magazine (September 1998)Google Scholar
  72. 72.
    Belavic, D., Hrovat, M., Pavlin, M.: Vertical thick-film resistors as load sensors. Journal of the European Ceramic Society 21, 1989–1992 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dan Mihai Ştefănescu

    There are no affiliations available

    Personalised recommendations