Skip to main content

Mixed Methods in Force Measurements

  • Chapter
Handbook of Force Transducers
  • 3669 Accesses

Abstract

This chapter comprises some applications which combine two or more force measurement principles, as well as force transducers based on sensors difficult to include in a certain category, like carbon nanotubes (CNTs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eklund, P. (Chair): WTEC Panel Report on international assessment of research and development of carbon nanotube manufacturing and applications. PDF created by World Technology Evaluation Center, Baltimore, MD (September 1, 2007)

    Google Scholar 

  2. Landmann, W.: Solid state replacements for electro-mechanical potentiometer type pressure transducers. Kulite Semiconductor Products, Inc., Leonia, NJ, PDF created on February 21 (2004)

    Google Scholar 

  3. Lutze, O., Ravi, K., Meruva, R.K., Frielich, A., Ramamurthy, N., Brown, R.B., Hower, R., Meyerhoff, M.E.: Stabilized potentiometric solid-state polyion sensors using silver-calixarene complexes as additives within ion-exchanger-based polymeric films. Fresenius J. Anal. Chem. 364, 41–47 (1999)

    Article  Google Scholar 

  4. Akle, B., Leo, D.J.: Electromechanical transduction in multilayer ionic transducers. Smart Mater. Struct. 13, 1081–1089 (2004)

    Article  Google Scholar 

  5. Franklin, J.W.: Electromechanical modeling of encapsulated ionic polymer transducers. Master’s Thesis, Virginia Polytechnic Institute and State University, VA (June 23, 2003)

    Google Scholar 

  6. Janocha, H., Kuhnen, K., Clepas, B.: Inherent sensory capabilities of solid state actuators. PDF SA98, Laboratory for Process Automation (LPA), University of Saarland, Germany (1998)

    Google Scholar 

  7. Fraden, J.: Handbook of Modern Sensors – Physics, Design and Applications, 3rd edn. Springer, New York (2004)

    Google Scholar 

  8. Jiang, J.C., White, R.C., Allen, P.K.: Microcavity vacuum tube pressure sensor for robotic tactile sensing. In: Transducers 1991. Int’l Conf. Solid-State Sensors and Actuators. Digest of Technical Papers, pp. 239–240. IEEE, New York (1991)

    Google Scholar 

  9. Darlinski, G., Böttger, U., Waser, R., Klauk, H., Halik, M., Zschieschang, U., Schmid, G.: Dehm Chr. Mechanical force sensors using organic thin-film transistors. Journal of Applied Physics 97, Paper 435702 (2005)

    Google Scholar 

  10. Intelligent force sensors using standard CMOS technologies, Fraunhofer Gesellschaft (2002) http://www.iis.fhg.de/asic/analog/microsystem/kraft/index.html

  11. Xiao, Z., Camino, F.E.: The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials. Nanotechnology 20, Paper 135205 (2009)

    Google Scholar 

  12. Seki, T., Uno, Y., Narise, K., Masuda, T., Inoue, K., Sato, S., Sato, F., Imanaka, K., Sugiyama, S.: Development of a large-force low-loss metal-contact RF MEMS switch. Sensors and Actuators A: Physical 132(2), 683–688 (2006)

    Article  Google Scholar 

  13. Parton, E., Verheyen, P.: Strained silicon – the key to sub-45 nm CMOS. III-Vs Review (The Advanced Semiconductor Magazine) 19(3), 28–32 (2006)

    Google Scholar 

  14. Tripathi, S.K., Shukla, N., Dhamodaran, S., Kulkarni, V.N.: Controlled manipulation of carbon nanopillars and cantilevers by focused ion beam. Nanotechnology 19, Paper 205302 (2008)

    Google Scholar 

  15. Boisen, A., Thundat, T.: Design & fabrication of cantilever array biosensors. materialstoday 12(9), 32–38 (2009)

    Google Scholar 

  16. Lange, D., Brand, O., Baltes, H.: CMOS Cantilever Sensor Systems. Atomic-Force Microscopy and Gas Sensing Applications. Springer, Berlin (2002)

    Google Scholar 

  17. Bashash, S., Salehi-Khojin, A., Jalili, N., Thompson, G.L., Vertegel, A., Muller, M., Berger, R.: Mass detection of elastically distributed ultrathin layers using piezoresponse force microscopy. J. Micromech. Microeng. 19, Paper 025016 (2009)

    Google Scholar 

  18. Lange, D., Akiyama, T., Hagleitner, C., Tonin, A., Hidber, H.R., Niedermann, P., Staufer, U., de Rooij, N.F., Brand, O., Baltes, H.: Parallel scanning AFM with on-chip circuitry in CMOS technology. In: Proc 12th IEEE Int’l Conf. Micro Electro Mechanical Systems, Nashville, TN, January 17-21, pp. 447–452 (1999)

    Google Scholar 

  19. Bausells, J.: Micro- and nano-electromechanical systems for [bio]molecular analysis. Contributions to Science (Institut d’Estudis Catalans) 3(1), 67–78 (2005)

    Google Scholar 

  20. Gel, M., Shimoyama, I.: Force sensing submicrometer thick cantilevers with ultra-thin piezoresistors by rapid thermal diffusion. J. Micromech. Microeng. 14, 423–428 (2004)

    Article  Google Scholar 

  21. Tellier, C.R., Leblois, T.G.: On the design of GaAs (hhl) resonant cantilevers: Study of piezoelectric excitation, of piezoresistive sensing and of micromachined structure. Sensors and Actuators A: Physical 132(1), 224–235 (2006)

    Article  Google Scholar 

  22. Yaldız, S., Ünsaçar, F.: A dynamometer design for measurement the cutting forces on turning. Measurement 39(1), 80–89 (2006)

    Article  Google Scholar 

  23. Castellini, P., Montanini, R., Revel, G.M.: Development of a film sensor for static and dynamic force measurement. Review of Scientific Instruments 73(9), 3378–3385 (2002)

    Article  Google Scholar 

  24. Wood, J. (ed.): The top ten advances in Materials Science. Materials Today, December 19 (2007)

    Google Scholar 

  25. Hierold, C., Stampfer, C., Helbling, T., Jungen, A., Tripp, M., Sarangi, D.: CNT based nano electro mechanical systems (NEMS). In: Proc. IEEE Int’l Symp. Micro-NanoMechatronics and Human Science – MHS2005, November 8-9, pp. 1–4. Nagoya Univ., Japan (2005); ISBN 0-7803-9482-8

    Chapter  Google Scholar 

  26. Bichoutskaia, E., Popov, A.M., Lozovik, Y.E.: Nanotube-based data storage devices. materialstoday 11(6), 38–43 (2008)

    Google Scholar 

  27. Mølhave, K., Hansen, T.M., Madsen, D.N., Bøggild, P.: Towards pick-and-place assembly of nanostructures. Journal of Nanoscience and Nanotechnology 4(3), 1–4 (2004)

    Article  Google Scholar 

  28. Popescu, A., Woods, L.M., Bondarev, I.V.: A carbon nanotube oscillator as a surface profiling device. Nanotechnology 19, Paper 435702 (2008)

    Google Scholar 

  29. Hunt, B., Noca, F., Hoenk, M.: Carbon nanotube bimorph actuators and force sensors. NASA Tech Briefs NPO-21153, Pasadena, CA, October 3 (2005)

    Google Scholar 

  30. Singh, G., Rice, P., Mahajan, R.L.: Fabrication and mechanical characterization of a force sensor based on an individual carbon nanotube. Nanotechnology 18, Paper 475501 (2007)

    Google Scholar 

  31. Baubin, M., Haid, C., Hamm, P., Gilly, H.: Measuring forces and frequency during active compression decompression cardiopulmonary resuscitation: a device for training, research and real CPR. Resuscitation 43(1), 17–24 (1999)

    Article  Google Scholar 

  32. Šantić, A., Kovačić, D., Gilly, H.: Force measuring device applied in cardio-pulmonary resuscitation, PDF on Internet, May 15 (2001)

    Google Scholar 

  33. Boonstra, T.W., Clairbois, H.E., Daffertshofer, A., Verbunt, J., van Dijk, B.W., Beek, P.J.: MEG-compatible force sensor. Journal of Neuroscience Methods 144(2), 193–196 (2005)

    Google Scholar 

  34. EMAT Technology from the R&D Lab to the Field. Innerspec Technologies, Inc., Lynchburg, VA (2009)

    Google Scholar 

  35. Sonic Sensors – Your EMAT solutions provider, Wayne Pilkington, CA (August 2009), http://sonicsensors.badlogic.net/img/whatis1.gif

  36. Sekalski, P., et al.: Static absolute force measurement for preloaded piezoelements used for active Lorentz force detuning system. In: Proc. XXIIth Int’l Conf. LINAC (Linear Accelerator), Lübeck, Germany, pp. 486–488 (2004)

    Google Scholar 

  37. Jin, W., Mote Jr., C.D.: On the calibration of multicomponent microforce sensors. J. Micromech. Microeng. 7(2), 156–163 (1998)

    Google Scholar 

  38. Cho, J.-M., Lee, S.-Y., Kim, S.-W., Kim, K.S., An, S.: A Lorentz force based fusion magnetometer-accelerometer with dual functions for the electronic compass. Applied Physics Letters 91(20), Paper 203519 (2007)

    Google Scholar 

  39. Jia, Y.M., Zhou, D., Luo, L.H., Zhao, X.Y., Luo, H.S., Or, S.W., Chan, H.L.W.: Magnetoelectric effect from the direct coupling of the Lorentz force from a brass ring with transverse piezoelectricity in a lead zirconate titanate (PZT) disk. Applied Physics A [Springer-Verlag] as Internet file (July 31, 2007)

    Google Scholar 

  40. Thess, A., Knaepen, B., Votyakov, E., Zikanov, O.: Sensitivity analysis of a Lorentz force flowmeter for laminar and turbulent flows in a circular pipe. In: Proc. Summer Program 2006, pp. 431–441. Center for Turbulence Research, University of Stanford, CA (2006)

    Google Scholar 

  41. Manginell, R.P., Adkins, D.R., Moorman, M.W., Hadizadeh, R., Copic, D., Porter, D., Anderson, J.M., Wheeler, D.R., Pfeifer, K.B., Rumpf, A.: Mass sensitive, Lorentz-force actuated, MEMS preconcentrator and chemical sensor. PDF from Internet, May 29 (2008)

    Google Scholar 

  42. Brückner, K., Cimalla, V., Niebelschütz, F., Stephan, R., Tonisch, K., Ambacher, O., Hein, M.A.: Strain- and pressure-dependent RF response of microelectromechanical resonators for sensing applications. J. Micromech. Microeng. 17, 2016–2023 (2007)

    Article  Google Scholar 

  43. Bădescu, G., Ştefănescu, D.M.: Installation for determining the elastic constants of rocks (in Romanian). Studiişi cercetări de mecanică aplicată, Tom 40(3), 451–466 (1981)

    Google Scholar 

  44. Janiczek, T.: Analysis of PVDF transducer signals stimulated by mechanical tension. Journal of Electrostatics 52, 167–172 (2001)

    Article  Google Scholar 

  45. Larsen, P.K.: Ferroelectric films for optical and piezoelectric applications. Project number 4191. Katholieke Universiteit Nijmegen, The Netherlands (January 2007), http://www.stw.nl/Projecten/N/nns/nns4191.htm

    Google Scholar 

  46. Sievilä, P., Rytkönen, V.-P., Hahtela, O., Chekurov, N., Kauppinen, J., Tittonen, I.: Fabrication and characterization of an ultrasensitive acousto-optical cantilever. J. Micromech. Microeng. 17, 852–859 (2007)

    Article  Google Scholar 

  47. Keplinger, F., Kvasnica, S., Jachimowicz, A., Kohl, F., Steurer, J., Hauser, H.: Lorentz force based magnetic field sensor with optical readout. Sensors and Actuators A: Physical 110(1-3), 112–118 (2004)

    Article  Google Scholar 

  48. Grubisic, A.N., Gabriel, S.B.: Development of an indirect counterbalanced pendulum optical-lever thrust balance for micro- to millinewton thrust measurement. Meas. Sci. Technol. 21, Paper 105101 (September 2010)

    Google Scholar 

  49. Kim, S.K., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nanotoday 2(5), 22–29 (2007); ISSN 1748 0132

    Google Scholar 

  50. Brook, A.J., Bending, S.J., Pinto, J., Oral, A., Ritchie, D., Beere, H., Springthorpe, A., Henini, M.: Micromachined III–V cantilevers for AFM-tracking scanning Hall probe microscopy. J. Micromech. Microeng. 13, 124–128 (2003)

    Article  Google Scholar 

  51. Grabiec, P., Radojewski, J., Zaborowski, M., Domanski, K., Schenkel, T., Rangelow, I.W.: Microelectronics and nanometer structures. Journal of Vacuum Science & Technology 22(1), 16–21 (2004)

    Article  Google Scholar 

  52. Poggio, M., Degen, C.L.: Force-detected nuclear magnetic resonance: recent advances and future challenges (Topical review). Nanotechnology 21, Paper 342001 (August 2010)

    Google Scholar 

  53. Morita, K., Sugimoto, Y., Sasagawa, Y., Abe, M., Morita, S.: Small-amplitude dynamic force microscopy using a quartz cantilever with an optical interferometer. Nanotechnology 21, Paper 305704 (July 2010)

    Google Scholar 

  54. Castellanos-Gomez, A., Agraït, N., Rubio-Bollinger, G.: Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors. Nano-technology 21(14), Paper 145702 (2010)

    Google Scholar 

  55. Hakonen, P.: Nanotubes weigh the atom. Research*eu results supplement (17) 43 (2009), http://cordis.europa.eu/ictresults/index.cfm?section=news&tpl=article&ID=90708

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ştefănescu, D.M. (2011). Mixed Methods in Force Measurements. In: Handbook of Force Transducers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18296-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18296-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18295-2

  • Online ISBN: 978-3-642-18296-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics