Resonator Force Transducers

  • Dan Mihai Ştefănescu


The resonator sensors (wires, beams, membranes, cylinders or tubes) are mechanical modifiers in which an elastic element is excited into vibration at its natural frequency, the value of which depends on the desired input quantity [12.1]. The output is thus at a frequency proportional to the measurand of interest, e.g. force or pressure. Like in properly excited parametric transducers, the stress applied to an elastic body generates a proportional signal. Resonant sensors are based on the fact that the resonance frequency (or relative phase of oscillation) of a vibrating micromechanical structure is a highly sensitive device for parameters that alter the resonator stiffness or geometry [12.2].


Resonant Frequency Force Transducer Tuning Fork Quartz Tuning Fork Quartz Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Usher, M.J., Keating, D.A.: Sensors and Transducers – Characteristics, Applications, Instrumentation, Interfacing, 2nd edn. MacMillan, Houndmills (1996)Google Scholar
  2. 2.
    Buser, R.A.: Resonant sensors. In: Bau, H.H., de Rooij, N.F., Kloeck, B. (eds.) Mechanical Sensors, vol. 7, pp. 205–284. VCH Weinheim, Germany (1994)CrossRefGoogle Scholar
  3. 3.
    Büttgenbach, S., Fabula, T., Schmidt, B., Wagner, H.-J.: Resonant force and pressure microsensors. 7. Intern. Fachmesse mit Kongress für Sensoren, Meßaufnehmern und Systeme – Sensor 95, 27–32 (1995)Google Scholar
  4. 4.
    Zecchin, P. (Chair.): Digital Load Cells – A Comparative Review of Performance and Application. The Institute of Measurement and Control, London, Document WP0803 (2003) Google Scholar
  5. 5.
    Cheshmehdoost, A., Jones, B.E.: A new cylindrical structure load cell with integral resonators. In: Proc. SENSORS VI: Technology, Systems and Applications, pp. 429–434. IOP Publishing, Bristol (1993)Google Scholar
  6. 6.
    Fraden, J.: Handbook of Modern Sensors – Physics, Design and Applications, 3rd edn. Springer, New York (2004)Google Scholar
  7. 7.
    Werszko, M.: Force transducers with quartz resonator. In: Kemény, T., Havrilla, K. (eds.) Force Measurement and Weighing in the 90s, IMEKO TC Event Series, vol. 29, pp. 295–299. MTESZ Házinyomda, Budapest, 1104-91Google Scholar
  8. 8.
    Wang, Z., Zhu, H., Dong, Y., Wang, J., Feng, G.: Force-frequency coefficient of symmetrical incomplete circular quartz crystal resonator. IEEE, Los Alamitos (2001)Google Scholar
  9. 9.
    Blom, F.R.: Resonant silicon beam force sensor. PhD dissertation. Twente University of Enschede, The Netherlands (1989)Google Scholar
  10. 10.
    Tung, V.T., Chizhik, S.A.: Quartz tuning fork Atomic Force Microscopy using a quality-factor control. In: Source: Physics, Chemistry and applications of nanostructures reviews and short notes, pp. 535–538. World Scientific Publishing Co., Singapore (2009)Google Scholar
  11. 11.
    Barbic, M., Eliason, L., Ranshaw, J.: Femto-Newton force sensitivity quartz tuning fork sensor. Sensors and Actuators A: Physical 136(2), 564–566 (2007)CrossRefGoogle Scholar
  12. 12.
    Castellanos-Gomez, A., Agraït, N., Rubio-Bollinger, G.: Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotechnology 20, Paper 215502 (2009)Google Scholar
  13. 13.
    Oprea, A., Henkel, K., Oehmgen, R., Appel, G., Schmeiβer, D., Lauer, H., Hausmann, P.: Increased sensor sensitivities obtained by polymer-coated quartz microbalances. Materials Science and Engineering C 8-9, 509–512 (1999)CrossRefGoogle Scholar
  14. 14.
    Mecea, V.M.: Loaded vibrating quartz sensors (Review paper). Sensors and Actuators A: Physical 40(1), 1–27 (1994)CrossRefGoogle Scholar
  15. 15.
    Elwenspoek, M., Wiegerink, R.: Mechanical Microsensors. Springer, Heidelberg (2001)Google Scholar
  16. 16.
    Brückner, K., Cimalla, V., Niebelschütz, F., Stephan, R., Tonisch, K., Ambacher, O., Hein, M.A.: Strain- and pressure-dependent RF response of microelectromechanical resonators for sensing applications. J. Micromech. Microeng. 17(10), 2016–2023 (2007)CrossRefGoogle Scholar
  17. 17.
    Abadal, G., Davis, Z.I., Borrisé, X., Boissen, A., Barniol, N., Pérez-Murano, F., Serra, F.: Atomic force microscope characterization of a resonating nanocantilever. Ultramicroscopy 97, 127–133 (2003)CrossRefGoogle Scholar
  18. 18.
    Huang, X.M.H., Feng, X.L., Zorman, C.A., Mehregany, M., Roukes, M.L.: VHF, UHF, and microwave frequency nanomechanical resonators. New Journal of Physics 7(247) (2005)Google Scholar
  19. 19.
    Mile, E., Jourdan, G., Bargatin, I., Labarthe, S., Marcoux, C., Andreucci, P., Hentz, S., Kharrat, C., Colinet, E., Duraffourg, L.: In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection. Nanotechnology, 21(16), Paper 165504 (2010)Google Scholar
  20. 20.
    Huang, X.M.: Ultrahigh and microwave frequency nanomechanical systems, April 12 (2003),
  21. 21.
    Busuttil, K.: Putting graphene in the balance. materialstoday 10(3), 15 (2007)Google Scholar
  22. 22.
    DiBiagio, E.: A case study of vibrating-wire sensors that have vibrated continuously for 27 years. Norwegian Geotechnical Institute, PDF created on August 3 (2004) Google Scholar
  23. 23.
    A piezoelectric disk resonator as a diametrical force sensor. Eksperimentalne tehnike u fizici, Universitas Studiorum Zagrabiensis, Croatia, June 30 (2009),
  24. 24.
    Walter, B., Faucher, M., Algre, E., Legrand, B., Boisgard, R., Aime, J.-P., Buchaillot, L.: Design and operation of a silicon ring resonator for force sensing applications above 1 MHz. J. Micromech. Microeng. 19, Paper 115009 (2009)Google Scholar
  25. 25.
    Survey of quartz bulk resonator sensor technologies. IEEE Ultrasonics, Ferroelectrics and Frequency Control Society (June 2009),
  26. 26.
    Wearn Jr., R.B., Paros, J.M.: Measurements of dead weight tester performance using high resolution quartz crystal pressure transducers, Redmond, WA, June 27 (2009),
  27. 27.
    Kirman, R.G.: A vibrating quartz force sensor. Transducer Tempcon Conference Papers, London, June 14-16, pp. 99-121 (1983)Google Scholar
  28. 28.
    Force Sensor. US Patent 5834646 (1998), European Patent EP 0737864 B1 (2000)Google Scholar
  29. 29.
    Lokhre, S.G., Virwani, K., Gajanan, B., Pai, S.P., Apte, P.R.: Study of vibrational modes of MEMS-resonators. In: Proceedings SPIE, vol. 3903, pp. 32–41 (1999)Google Scholar
  30. 30.
    Tilmans, H.A.C.: Micro-mechanical sensors using encapsulated built-in resonant strain gauges. PhD dissertation, Twente University of Enschede, Holland (1993)Google Scholar
  31. 31.
    Bao, M.-H.: Micro Mechanical Transducers: Pressure Sensors, Accelerometers and Gyroscopes. In: Regtien, P.P.L. (ed.) Handbook of Sensors and Actuators, 2nd edn. Elsevier, Amsterdam (2004)Google Scholar
  32. 32.
    Cuscό L. (Coord.): Guide to the Measurement of Pressure and Vacuum. The Institute of Measurement and Control, London, UK (Published 1998)Google Scholar
  33. 33.
    Muraoka, S.: Application of a quartz resonator to a force sensor built in a robot finger for use in grasp or recognition environment. Measurement 34, 229–244 (2003)CrossRefGoogle Scholar
  34. 34.
    Woody, S.C., Smith, S.T.: Resonance-based vector touch sensors. Precision engineering 27(3), 221–233 (2003)CrossRefGoogle Scholar
  35. 35.
    Felts, J.R., King, W.P.: Mechanical design for tailoring the resonance harmonics of an atomic force microscope cantilever during tip-surface contact. J. Micromech. Microeng. 19, Paper 115008 (2009)Google Scholar
  36. 36.
    Kobayashi, M.: New technology for measuring force and mass. In: Proc. 2nd Int’l Symp. Measurement of Force and Mass between Japan and China, May 23-24, pp. 79–84. Tsukuba Science City, Japan (1994)Google Scholar
  37. 37.
    Okazaki, M.: Development of the world’s first precision tuning-fork force sensor. Companies from Ibaraki Prefecture, Japan, p. 44, PDF created on October 14 (2008)Google Scholar
  38. 38.
    Barthod, C., Teisseyre, Y., Géhin, C.I., Gautier, G.: Resonant force sensor using a PLL electronic. Sensors and Actuators A: Physical 104, 143–150 (2003)CrossRefGoogle Scholar
  39. 39.
    Hayashi, T., Katase, Y., Ueda, K., Hoshino, T., Suzawa, H., Kobayashi, M.: Performance of force comparator with reference to tuning-fork type force transducer. In: IMEKO Int’l Conf. Cultivating Metrological Knowledge, Merida, Mexico, November 27-30, Paper 58 (2007)Google Scholar
  40. 40.
    Hopcroft, M.: High-stability silicon MEMS resonators. DARPA HERMIT Research Program (July 2009),
  41. 41.
    Wang, K., Wong, A.C., Nguyen, C.T.C.: VHF free-free beam high-Q micro-mechanical resonators. Journal of Microelectromechanical Systems 9(3) (September 2000)Google Scholar
  42. 42.
    Fabula, T., Wagner, H.-J., Schmidt, B., Büttgenbach, S.: Triple-beam resonant silicon force sensor based on piezoelectric thin films. Sensors and Actuators A: Physical 41-42, 375–380 (1994)CrossRefGoogle Scholar
  43. 43.
    Yan, T., Jones, B.E., Astrup, J., Rakowski, R.T., Tudor, M.J., Beeby, S.P., White, N.M.: Stiff load cell with high overload capability and direct frequency output. In: Proc. 18th Conf. Solid-State Sensors (Eurosensors 2004), Rome, Italy, September 12-15 (2004)Google Scholar
  44. 44.
    Yan, T., Jones, B.E., Rakowski, R.T., Tudor, M.J., Beeby, S.P., White, N.M.: Stiff torque transducer with high overload capability and direct frequency output. In: CD Proc. 19th IMEKO TC-3 Int’l Conf. Force, Mass & Torque Measurements: Theory and Application in Laboratories and Industries, Paper 47, Cairo, Egypt, February 19-23 (2005)Google Scholar
  45. 45.
    Hunt, A. (Coord.): Guide to the Measurement of Force. The Institute of Measurement and Control, London (Published 1998); ISBN 0-904457-28-1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dan Mihai Ştefănescu

    There are no affiliations available

    Personalised recommendations