MEMS Processing and Fabrication Techniques and Technology—Silicon-Based Micromachining

  • Zhihong Li
  • Bo Liu
  • Wei Wang


The silicon-based micromachining technology, which is originated from the silicon IC (integrated circuits) technology, is the mainstream technology for MEMS fabrication, and the most MEMS products on market are manufactured with this technology. The silicon-based micromachining technologies can be divided into two categories: surface micromachining technology and bulk micromachining technology. Instead of introducing detailed individual techniques, this chapter will focus on utilizing and combining different processes to achieve different device fabrication and meet different requirements. For surface micromachining, isolation, metallization and monolithic integration are specially emphasized; while for bulk micromachining, we discuss more details on different sets of processes after a brief introduction of individual processes, such as DRIE and bonding.


Surface micromachining bulk micromachining DRIE bonding integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Howe R. T., (1995), Recent advances in surface micromachining. IEEJ Tech. Dig. 13th Sensor Symp., 1–8Google Scholar
  2. [2]
    Petersen K. E., (1982), Silicon as a mechanical material. In Proc. IEEE 70: 420–457CrossRefGoogle Scholar
  3. [3]
    Bustillo J. M., R. T. Howe, and R. S. Muller, (1998), Surface micromachining for microelectromechanical systems. Proc. IEEE, 86: 1552–1574CrossRefGoogle Scholar
  4. [4]
    Core T. A., W. K. Tsang, and S. J. Sherman, (1993), Fabrication technology for an integrated surface-micromachined sensor. Solid State Technol, 36: 39–47Google Scholar
  5. [5]
    Hornbeck L. J., (1995), Projection displays and MEMS: timely convergence for a bright future. Proceedings of SPIE, Texas, USA, 1995, 2Google Scholar
  6. [6]
    Howe R. T., and R. S. Muller, (1983), Polycrystalline Silicon Micromechanical Beams. J. Electrochem. Soc., 130: 1420–1423CrossRefGoogle Scholar
  7. [7]
    Howe R. T., (1985), Polycrystalline Silicon Microstructures, In Micromachining and Micropackaging of Transducers. Fung C. D., P. W. Cheung, W. H. Ko, Fleming DG, Eds. New York: Elsevier, 169–187Google Scholar
  8. [8]
    Alley R. L., R. T. Howe, and K. Komvopoulos, (1988), The effect of release-etch processing on surface microstructure stiction. In Proceedings of the IEEE Solid-State Sensor and Actuator Workshop, SC, USA, 1988, 202–207Google Scholar
  9. [9]
    Hoffman R. W., (1976), Mechanical Properties of Non-Metallic Thin Films, In Physics of Nonmetallic Thin Films, (NATO Advanced Study Institutes Series: Series B, Physics), Dupuy CHS and Cachard A., Eds., Plenum Press, 273–353Google Scholar
  10. [10]
    Hoffman R. W., (1975), Stresses in Thin Films: The Relevance of Grain Boundaries and Impurities. Thin Solid Films 34: 185–190CrossRefGoogle Scholar
  11. [11]
    Juan W. H., S. W. Pang, (1995), High aspect ratio Si etching for microsensor fabrication. J. Vac. Sci. Technol. A 13: 834–838CrossRefGoogle Scholar
  12. [12]
    Juan W. H., S. W. Pang, (1996), Released Si microstructures fabricated by deep etching and shallow diffusion, J. Microelectromech. Syst, 5: 19–23Google Scholar
  13. [13]
    Seidel H., L. Csepregi, A. Heuberger, and H. Baumg et al, (1990), Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, J. Electrochem. Soc. 137: 3612CrossRefGoogle Scholar
  14. [14]
    Kovacs G. T. A., N. I. Maluf, K. E. Petersen, (1998), Bulk micromachining of silicon. In Proceedings of the IEEE, 1998, 86(8): 1536–1551Google Scholar
  15. [15]
    Tong Q. Y., and U. Gösele, (1999), Semiconductor Wafer Bonding: Science and Technology. New York: WileyGoogle Scholar
  16. [16]
    Nathanson H. C., and R. A. Wickstrom, (1965), A resonant gate surface transistor with high-q bandpass properties. IEEE Transactions on Electron Devices, 12: 507CrossRefGoogle Scholar
  17. [17]
    Tai Y. C., L. S. Fan, and R. S. Muller, (1989), IC-processed micro-motors: Design, technology, and testing. In Proc. IEEE Micro Electro Mechanical Systems (MEMS) Salt Lake City, UT, 1–6Google Scholar
  18. [18]
    Hao Y., Z. Li, and D. Zhang, (1999), Surface Sacrificial Layer Process, Electronics Science and Technology Review (Chinese), 12: 16Google Scholar
  19. [19]
    Koester D. A., R. Mahadevan, A. Shishkoff, and K. W. Markus, (1996), Smart-MUMPs Design Handbook Including MUMPs Introduction and Design Rules, rev 4. MEMS Technology Application Center MCNCGoogle Scholar
  20. [20]
    Koester D. A., R. Mahadevan, B. Hardy, and K. W. Markus, (2000), MUMPs Design Handbook, Revision 5.0. Cronos Integrated Microsystems, Research Triangle Park, NCGoogle Scholar
  21. [21]
    Nasby R., J. Sneigowski, J. Smith, S. Montague, C. Barron, W. Eaton, and P. McWhorter, (1996), Application of chemical-mechanical polishing to planarization of surface-micromachined devices. In proceedings of Solid-State Sensors and Actuators Workshop, Hilton Head SC, 48–53Google Scholar
  22. [22]
    Schriner H., B. Davies, J. Sniegowski, M. S. Rodgers, J. Allen, (1998), Sandia Agile MEMS Prototyping, Layout Tols, Education and Services Program. In proceedings of 2nd international conference on engineering design and automation, Maui, Hawaii, 1998Google Scholar
  23. [23]
    Tang W., T. H. Nguyen, M. W. Judy, and R. T. Howe, (1990), Electrostatic-comb drive of lateral polysilicon resonators, Sensors Actuators, A 21: 328–331CrossRefGoogle Scholar
  24. [24]
    Rodgers M., and J. Sniegowski, (1998), 5-level polysilicon surface micromachine technology: application to complex mechanical systems. In Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head, SC, 1998, 144–149Google Scholar
  25. [25]
    Nguyen C. T., L. P. B. Katehi, and G. M. Rebeiz, (1998), Micromachined devices for wireless communications. In Proc. IEEE 86: 1756–1768CrossRefGoogle Scholar
  26. [26]
    Yao J. J., (2000), RF MEMS from a device perspective, J. Micromech. Microeng, 10: R9–R38CrossRefGoogle Scholar
  27. [27]
    Dec A., and K. Suyama, (2000), A 1.9-GHz CMOS VCO with micromachined electromechanically tunable capacitors. IEEE J. Solid-State Circuits 35: 1231–1237CrossRefGoogle Scholar
  28. [28]
    Ashby K. B., I. A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian, (1996), High Q inductors for wireless applications in a complementary silicon bipolar process. IEEE J.Solid-State Circuits, 31: 4–9CrossRefGoogle Scholar
  29. [29]
    Burghartz J. N., D. C. Edelstein, K. A. Jenkins, and Y. H. Kwark, (1997), Spiral inductors and transmission lines in silicon technology using copper-damascene interconnects and low-loss substrates. IEEE Trans. Microw. Theory Tech. 45: 1961–1968CrossRefGoogle Scholar
  30. [30]
    Yeh J. A., H. Jiang, H. P. Neves, and N. C. Tien, (2000), Copper-encapsulated silicon micromachined structures. ASME/IEEE J. Microelectromech. Syst. 9: 281–287CrossRefGoogle Scholar
  31. [31]
    Read D. T., and J. W. Dally, (1994), Mechanical behavior of aluminum and copper thin films. AMD Mechan, Materials for Electron. Packag. 187: 41–49Google Scholar
  32. [32]
    Taylor W. P., and M. G. Allen, (1997), Integratedmagnetic microrelays: normally open, normally closed, and multi-pole devices. In Tech. Digest, 1997 Int. Conf. on Solid-State Sensors and Actuators, 1149–1152Google Scholar
  33. [33]
    Zavracky P. M., S. Majumder, and N. E. McGruer, (1997), Micromechanical switches fabricated using nickel surface micromachining, J. Microelectromech. Sys., 6: 3–9CrossRefGoogle Scholar
  34. [34]
    Young D. J., and B. E. Boser, (1996), A micromachined variable capacitor for monolithic low noise VCO’s. In Tech Dig. Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, 1996, 86Google Scholar
  35. [35]
    Pierret R. F., (1996), Semiconductor Device Fundamentals. Addison-WesleyGoogle Scholar
  36. [36]
    Murarka S. P., (1983), Silicides for VLSI Applications. AcademicGoogle Scholar
  37. [37]
    Wolf S., (1990), Silicon Processing for VLSI Era Vol. 2. Lattice PressGoogle Scholar
  38. [38]
    Lee H., (2000), Characterization of shallow silicide junctions for sub-quartermicron ULSI technology-extraction of silicidation induced Schottky contact area. IEEE Trans Electron Devices, 47: 762–767CrossRefGoogle Scholar
  39. [39]
    Lukyanchikova N. B., M. V. Petrichuk, N. Garbar, E. Simoen, A. Poyai, and C. Claeys, (2000), Impact of cobalt silicidation on the low-frequency noise behavior of shallow P—N junctions. IEEE Electron Device Lett, 21: 408–410CrossRefGoogle Scholar
  40. [40]
    Osburn C. M., J. Y. Tsai, and J. Sun, (1996), Metal silicides: active elements of ULSI contacts. J. Electron Mater, 25: 1725–1739CrossRefGoogle Scholar
  41. [41]
    Ohguro T., M. Saito, E. Morifuji, T. Yoshitomi, T. Morimoto, H. S. Momose, Y. Katsumata, and H. Iwai, (2000), Thermal stability of CoSi2 film for CMOS salicide. IEEE Trans. Electron Devices, 47: 2208–2213CrossRefGoogle Scholar
  42. [42]
    Fuji K., K. Kikuta, K. Inoue, K. Mikagi, S. Chikaki, T. Kikkawa, (1996), A thermally stable Ti—W salicide for deep-submicron logic with embedded DRAM. In IEDM Tech. Dig., San Francisco, CA, USA, 1996, 451–454Google Scholar
  43. [43]
    Ohguro T., et al., (1994), Analysis of resistance behavior in Ti-and Ni-Salicided polysilicon films. IEEE Trans. Electron Devices, 32: 2305–2317CrossRefGoogle Scholar
  44. [44]
    Li Z., G. Zhang, W. Wang, Y. Hao, T. Li, G. Wu, (2002), Study on the application of silicide in surface micromachining. Journal of Micromechanics and Microengineering, 12: 162–167CrossRefGoogle Scholar
  45. [45]
    Jiang H., Y. Wang, J. A. Yeh, N. C. Tien, (2000), On-chip spiral inductors suspended over deep copper-lined cavities. IEEE Trans. Microwave Theory Techniques, 48: 2415–2423CrossRefGoogle Scholar
  46. [46]
    Jiang H., J. A. Yeh, Y. Wang, N. C. Tien, (2000), Electromagnetically shielded high-Q CMOS-compatible copper inductors. In Tech. Dig. IEEE Int. Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2000, 330–331Google Scholar
  47. [47]
    Kiang M. H., et al., (1992), Planarized copper interconnects by selective electroless plating. In MRS Symp. Dig., 260, 1992, 745–755Google Scholar
  48. [48]
    Jiang H., (2001), A MEMS Fabrication Technology for On-chip Radio-frequency Passive Components. Thesis, Cornell UniversityGoogle Scholar
  49. [49]
    Shi W., N. C. Tien, Z. Li, (2007), A Highly Reliable Lateral MEMS Switch Utilizing Undoped Polysilicon as Isolation Material. Journal Of Microelectromechanical Systems, 16: 1173–1184CrossRefGoogle Scholar
  50. [50]
    Wang Y., Z. Li, D. T. McCormick, N. C. Tien, (2002), Low-voltage lateral-contact microrelays for RF applications. In Proc. 15th IEEE Int. Conf. Micro-Electro-Mechanical Systems, Las Vegas, NV, USA, Jan. 2002, 645–648Google Scholar
  51. [51]
    Wang Y., Z. Li, D. T. McCormick, N. C. Tien, (2004), A low-voltage lateral MEMS switch with high RF performance. J. Microelectromech. Syst. 13: 902–911CrossRefGoogle Scholar
  52. [52]
    Kruglick E. J. J., K. S. J. Pister, (1999), Lateral MEMS microcontact considerations. J. Microelectromech. Syst. 8: 264–271CrossRefGoogle Scholar
  53. [53]
    Wang Y., Z. Li, D. T. McCormick, N. C. Tien, (2002), Low-Voltage Lateral-Contact Microrelays For RF Applications. In proceedings of the Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (MEMS’02), Las Vegas, NV, USA, Jan. 2002, 645–648Google Scholar
  54. [54]
    Moseley R. W., E. M. Yeatman, A. S. Holmes, R. R. A. Syms, A. P. Finlay, and P. Boniface, (2006), Laterally actuated, low voltage, 3-port RF MEMS switch. In Proc. 19th IEEE Int. Conf. Micro-Electro-Mechanical Systems, Istanbul, Jan. 2006, 878–881Google Scholar
  55. [55]
    Li Z., D. Zhang, T. Li, W. Wang, G. Wu, (2000), Bulk micromachined relay with lateral contact. J. Micromech. Microeng, 10: 329–333CrossRefGoogle Scholar
  56. [56]
    Li Z., Z. Yang, Z. Xiao, Y. Hao, T. Li, G. Wu, Y. Wang, (2000), A bulk micromachined vibratory lateral gyroscope fabricated with wafer bonding and deep trench etching. Sensors and Actuators A: Physical 83: 24–29CrossRefGoogle Scholar
  57. [57]
    Wood R., R. Mahadevan, V. Dudley, A. Cowen, E. Hill, K. Markus, (1998), MEMS microrelays. Mechatronics 8: 535–547CrossRefGoogle Scholar
  58. [58]
    Simon J., S. Saffer, F. Sherman, C. Kim, (1998), Lateral polysilicon microrelays with a mercury microdrop contact. IEEE Trans. Industr. Electron. 45: 854–860CrossRefGoogle Scholar
  59. [59]
    Rebeiz G. M., (2003), RF MEMS: Theory, Design and Technology. Hoboken, NJ: WileyCrossRefGoogle Scholar
  60. [60]
    Brosnihan T. J., J. M. Bustillo, A. P. Pisano, R. T. Howe, Embedded interconnect and electrical isolation for high-aspect ratio, SOI inertial instruments. In Proc. 9th IEEE Int. Conf. on Solid-State Sensors & Actuators (Transducers’ 99), Jun. 1999, 1002–1005Google Scholar
  61. [61]
    Muller L., J. M. Heck, R. T. Howe, A P. Pisano, (2000), Electrical isolation process for molded, high-aspect-ratio polysilicon microstructures. In Proc. 13th IEEE Int. Conf. Micro-Electro-Mechanical Systems, Jan. 2000, 590–595Google Scholar
  62. [62]
    Que L., J. Park, Y. B. Gianchandani, (2001), Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices. J. Microelectromech. Syst. 10: 247–254CrossRefGoogle Scholar
  63. [63]
    Borwick R. L., P. A. Stupar, and J. DeNatale, (2003), A hybrid approach to low-voltage MEMS switches. In Proc. 12th IEEE Int. Conf. on Solid-State Sensors, Actuators and Microsystems (Transducers’03), Jun. 2003, 859–862Google Scholar
  64. [64]
    Yun W., (1992), A Surface Micromacined Accelerometer with Integrated CMOS Detection Circuitry. Ph.D. Thesis, U.C.BerkeleyGoogle Scholar
  65. [65]
    Howe R. T., (1995), Polysilicon Integrated Microsystems: Technologies and Applications. In Tech. Digest. 8th Int. Conf. Solid-State Sensors and Actuators (Transducers’ 95)/Eurosensors IX, Stockholm, Sweden, 1995, 43–46Google Scholar
  66. [66]
    Bustillo J. M., G. K. Fedder, C. T. Nguyen, and R. T. Howe, (1994), Process technology for modular integration of CMOS and polysilicon microstructures, Microsystem Technologies, 1: 30–41CrossRefGoogle Scholar
  67. [67]
    Franke A. E., J. M. Heck, T. King, R. T. Howe, (2003), Polycrystalline silicon-germanium films for integrated Microsystems. J. Microelectromechanical Systems, 12: 160–171CrossRefGoogle Scholar
  68. [68]
    Smith J. H., S. Montague, J. J. Sniegowski, and J. R. Murray, et al., (1995), Embedded micromechanical devices for the monolithic integration of MEMS with CMOS. In Proc. Int. Electron Devices Meeting, Washington, DC, 1995, 609–612Google Scholar
  69. [69]
    Fedder G. K., S. Santhanam, M. L. Reed, S. C. Eagle, D. F. Guillou, M. S. Lu, and L. R. Carley, (1996), Laminated high-aspect-ratio micro-structures in a conventional CMOS process, Sens. Actuators A, 57: 103–110CrossRefGoogle Scholar
  70. [70]
    Zhu X., D. W. Greve, R. Lawton, N. Presser, and G. K. Fedder, (1998), Factorial experiment on CMOS-MEMS RIE post processing. In Proc. 194th Electrochemical Society Meeting, Symposium on Microstructures and Microfabricated Systems IV, Boston, MA, 1998, 33–42Google Scholar
  71. [71]
    Xie H., and G. K. Fedder, (2001), A CMOS-MEMS lateral-axis gyroscope. In Tech. Dig. 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2001) Interlaken, Switzerland, 2001, 162–165Google Scholar
  72. [72]
    Burgett S. R., K. S. Pister, and R. S. Fearing, (1992), Three Dimensional Structures Made with Microfabricated Hinges. In proceedings of ASME Micromechanical Sensors, Actuators, and Systems, Anaheim, CA, 1992, 1–11Google Scholar
  73. [73]
    Lin L. Y., S. S. Lee, M. C. Wu, and K. J. Pister, (1995), Micromachined integrated optics for free-space interconnections. In Proc. IEEE Microelectromech. Syst. Amsterdam, the Netherlands, 1995, 77–82Google Scholar
  74. [74]
    Suzuki K., I. Shimoyama, and H. Miura, (1994), Insect-model based microrobot with elastic hinges, J. Microelectromechanical Syst., 3: 4–9CrossRefGoogle Scholar
  75. [75]
    Hui E. E., R. T. Howe, and M. S. Rodgers, (2000), Single-step assembly of complex 3-D microstructures. In Proc 13th Int. Conf. Microelectromechanical Systems Miyazaki, Japan, 2000, 602–607Google Scholar
  76. [76]
    Fan L., R. T. Chen, A. Nespola, M. C. Wu, (1998), Universal MEMS platforms for passive RF components: suspended inductors and variable capacitors. In Proc. IEEE, 11th Ann. Int. Workshop on Micro Electro Mechanical Systems, 1998, 29–33Google Scholar
  77. [77]
    Goldsmith C. L., Z. Yao, S. Eshelman, and D. Denniston, (1998), Performance of low-loss RF MEMS capcitive switches, IEEE Microwave Guided Wave Lett., 8: 269–271CrossRefGoogle Scholar
  78. [78]
    Yao Z. J., S. Chen, S. Eshelman, D. Denniston, and C. Goldsmith, (1999), Micromachined low-loss microwave switches, J. Microelectromech. Syst., 8: 129–134CrossRefGoogle Scholar
  79. [79]
    Honer K. A., (2001), Surface Micromachining Techniques for Integrated Microsystems. Thesis, Stranford UniversityGoogle Scholar
  80. [80]
    Hornbeck L. J., (1983), 128×128 deformable mirror device. IEEE Transactions on Electron Devices, 30: 539–545CrossRefGoogle Scholar
  81. [81]
    Hornbeck L. J., (1996), Digital Light Processing and MEMS: An Overview. In Digest of the IEEE/LEOS 1996 Summer Topical Meetings, Keystone, CO, USA, 1996, 7–8Google Scholar
  82. [82]
    Hornbeck L. J., (1996), Digital Light Processing: A New MEMS-Based Display Technology. In Technical Digest of the IEEJ 14th Sensor Symposium, Kawasaki, Japan, 1996, 297–304Google Scholar
  83. [83]
    Hornbeck L. J., (1990), Deformable-mirror spatial light modulators. In Proceedings of the SPIE-The International Society for Optical Engineering, 1990, 86–102. at texas instrumentsGoogle Scholar
  84. [84]
    Amm D. T., R. W. Corrigan, (1999), Optical performance of the grating light valve technology. In: Proceedings of the SPIE-The International Society for Optical Engineering, 1999, 71–78Google Scholar
  85. [85]
    Sampsell J. B., (1994), An Overview of the Performance Envelope of Digital Micromirror Device (DMD) Based Projection Display Systems. In: Digest of Technical Papers, Society for Information Display International Symposium, San Jose, CA, 1994, 1–4Google Scholar
  86. [86]
    Van Kessel P. F., L. J. Hornbeck, R. E. Meier, M. R. Douglass, (1998), A MEMSA MEMS-Based Projection Display. In proceedings of the IEEE 86 (8): 1687–1704CrossRefGoogle Scholar
  87. [87]
    Goldsmith C., T. Lin, B. Powers, W. Wu, B. Norvell, (1995), Micromechanical membrane switches for microwave applications. In Tech. Digest, IEEE Microwave Theory and Techniques Symp., 1995, 91–94Google Scholar
  88. [88]
    Goldsmith C., J. Randall, S. Eshelman, T. Lin, D. Denniston, S. Chen, B. Norvell, (1996), Characteristics of micromachined switches at microwave frequencies. In Tech. Digest, IEEE Microwave Theory and Techniques Symp., 1996, 1141Google Scholar
  89. [89]
    Young D. J., B. E. Boser, (1997), A micromachine-based RF low-noise voltage-controlled oscillator. In Proceedings of the IEEE 1997 Custom Integrated Circuits Conference, New York, USA, 1997, 431–434Google Scholar
  90. [90]
    Young D. J., V. Malba, J. J. Ou, A. F. Bernhardt, B. E. Boser, (1997), Monolithic high-performance three-dimensional coil inductors for wireless communication applications. In International Electron Devices Meeting 1997. IEDM Technical Digest, New York, NY, USA, 1997, 67–70Google Scholar
  91. [91]
    Young D. J., V. Malba, J. Ou, A. F. Bernhardt, B. E. Boser, (1998), A low-noise RF voltage-controlled oscillator using on-chip high-Q three-dimensional coil inductor and micromachined variable capacitor. In proceedings of Solid-State Sensor and Actuator Workshop, Cleveland, OH, USA, 1998, 128–131Google Scholar
  92. [92]
    Zhao Y., M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, J. Kitching, (2002), Optomechanical uncooled infrared imaging system: design, microfabrication, and performance, J. Microelectromech. Syst., 11(2): 136–146CrossRefGoogle Scholar
  93. [93]
    Mao M., T. Perazzo, O. Kwon, A. Majumdar, (1999), Direct-view uncooled microoptomechanical infrared camera. In Proceedings of 12th IEEE International Conference on MEMS, New York, NY, 1999, 100–105Google Scholar
  94. [94]
    Choi J., J. Yamaguchi, S. Morales, R. Horowitz, Y. Zhao, A. Majumdar, (2004), Design and control of a thermal stabilizing system for a MEMS optomechanical uncooled infrared imaging camera, Sensors and Actuators A: Physical, 104: 132–142CrossRefGoogle Scholar
  95. [95]
    Ishizuya T., J. Suzuki, K. Akagawa, T. Kazama, (2002), 160 × 120 pixels optically readable bimaterial infrared detector. In Proceedings of 15th IEEE International Conference on MEMS, New York, NY, USA, 2002, 578–581Google Scholar
  96. [96]
    Grbovic D., N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, B. Mclntyre, (2006), Uncooled infrared imaging using bimaterial microcantilever arrays, Applied Physics Letters, 89: 073118CrossRefGoogle Scholar
  97. [97]
    Kovacs G. T. A, (1998), Micromachined Transducers Sourcebook. McGraw-HillGoogle Scholar
  98. [98]
    Frühauf J., B. Hannemann, (1997), Anisotropic multi-step etch processes of silicon. J. Micromech. Microeng. 7: 137–140CrossRefGoogle Scholar
  99. [99]
    Kendall D. L., (1990), A new theory for the anisotropic etching of silicon and some underdeveloped chemical micromachining concepts. J. Vac. Sci. Technol. 8(4): 3598–3605CrossRefGoogle Scholar
  100. [100]
    Yan G., G. Chan, I. Hsing, R. Sharma, J. Sin, Y. Wang, (2001), An improved TMAH Si-etching solution without attacking exposed aluminum, Sensors and Actuators A: Physica, 89(1–2): 135–141CrossRefGoogle Scholar
  101. [101]
    STS, (1997), “Anisotropic Dry Silicon Etching”, presented at The symposium on microstructures and microfabricated systems at the Annual meeting of the electrochemical society, Montreal, Quebec, Canada, May 4–9, 1997Google Scholar
  102. [102]
    Ishihara K., C. Yun, A. A. Ayón, M. A. Schmidt, (1999), A Inertial sensor Technology Using DRIE and Wafer Bonding with Interconnecting capability, Journal of Microelectromechanical Systems, 8(4): 403–408CrossRefGoogle Scholar
  103. [103]
    Ishihara K., C. F. Yung, A. Ayon, M. A. Schmidt, (1999), An inertial sensor technology using DRIE and wafer bonding with enhanced interconnect capability. In 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 254Google Scholar
  104. [104]
    Docker P. T., P. Kinnell, M. C. L. Ward, (2003), A dry single-step process for the manufacture of release MEMS structures. J. Micromech. Microeng, 13: 790–794CrossRefGoogle Scholar
  105. [105]
    Zhu Y., G. Yan, J. Fan, J. Zhou, X. Liu, Z. Li, Y. Wang, (2005), Fabrication of keyhole-free ultra-deep high-aspect-ratio isolation trench and its application. J. Micromech. Microeng, 15: 636–642CrossRefGoogle Scholar
  106. [106]
    Zhu Y., G. Yan, J. Fan, X. Liu, J. Zhou, Y. Wang, (2005), Post-CMOS process for high-aspect-ratio monolithically integrated single crystal silicon microstructures. In Proceedings of Transducers’ 05, 2005, 1130–1133Google Scholar
  107. [107]
    Klaassen E. H., K. Petersen, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley, G. T. A. Kovacs, (1996), Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sensors and Actuators A: Physical, 52(1–3): 132–139CrossRefGoogle Scholar
  108. [108]
    Schmidt M. A., (1998), Wafer-to-wafer bonding for microstructure formation. In Proceedings of the IEEE, 86(8): 1575–1585CrossRefGoogle Scholar
  109. [109]
    Petersen K., P. Barth, J. Poydock, J. Brown, J. Mallon, J. Bryzek, (1988), Silicon fusion bonding for pressure sensors. In Proceedings of Solid-State Sensor and Actuators Workshop, IEEE, 1988, 144–147Google Scholar
  110. [110]
    Harendt C., H. G. Graf, B. Hofflinger, E. Penteker, (1992), Silicon fusion bonding and its characterization. J. Micromech. Microeng, 2: 113–116CrossRefGoogle Scholar
  111. [111]
    Haisma J., B. A. C. M. Spierings, U. K. P. Biermann, A. A. van Gorkum, (1994), Diversity and feasibility of direct bonding: a survey of a dedicated optical technology. Appl. Opt., 33: 1154–1169CrossRefGoogle Scholar
  112. [112]
    Albauqh K. B., P. E. Cade, D. H. Rasmussen, (1988), Mechanisms of anodic bonding of silicon to pyrex glass. In Proceedings of Solid-State Sensor and Actuators Workshop, IEEE, 1988, 109–110Google Scholar
  113. [113]
    Dragoi V., T. Glinsner, G. Mittendorfer, B. Wieder, P. Lindner, (2003), Adhesive wafer bonding for MEMS applications. In Proceeding of SPIE, 2003, 5116(1): 160–167Google Scholar
  114. [114]
    Cheng Y., L. Lin, K. Najafi, (2000), Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging. Journal of Microelectromechanical Systems, 9(1): 3–8CrossRefGoogle Scholar
  115. [115]
    Sparks D., G. Queen, R. Weston, G. Woodward, M. Putty, L. Jordan, S. Zarabadi, K. Jayakar, (2001), Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder. J. Micromech. Microeng, 11: 630–634CrossRefGoogle Scholar
  116. [116]
    Knechtel R., (2005), Glass frit bonding: an universal technology for wafer level encapsulation and packaging. Microsystem Technologies, 12(1–2): 63–68CrossRefGoogle Scholar
  117. [117]
    Wolffenbuttel R. F., and K. D. Wise, (1994), “Low temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors and Actuators A, 43: 223–229CrossRefGoogle Scholar
  118. [118]
    Lin C., C. Hsu, H. Yang, W. Wang, W. Fang, (2008), Implementation of silicon-on-glass MEMS devices with embedded through-wafer silicon vias using the glass reflow process for wafer-level packaging and 3D chip integration. J. Micromech. Microeng, 18: 1–6Google Scholar
  119. [119]
    Chae J., H. Kulah, K. Najafi, (2005), A CMOS-compatible high aspect ratio siliconon-glass in-plane micro-accelerometer. J. Micromech. Microeng, 15: 336–345CrossRefGoogle Scholar
  120. [120]
    Chen B. T., J. M. Miao, F. E. H. Toy, (2007), Fabrication and characterization of DRIE-micromachined electrostatic, microactuators for hard disk drives. Microsys. Technol, 13: 11–19CrossRefGoogle Scholar
  121. [121]
    Xiao Z., G. Wu, D. Zhang, Y. Hao, Z. Li, (1999), Lateral capacity sensed accelerometer fabricated with the anodic bonding and the high aspect ratio etching. In proceedings of 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 1518Google Scholar
  122. [122]
    Li Z., Z. Xiao, Y. Hao, T. Li, G. Wu, Y. Wang, (1999), A bulk micromachined vibratory lateral gyroscope fabricated with wafer bonding and deep trench etching. In 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 1594Google Scholar
  123. [123]
    Baek S. S., Y. S. Oh, B. J. Ha, A. D. An, B. H. An, H. Song, C. M. Song, (1999), A symmetrical Z-axis gyroscope with a high aspect ratio using simple and new process. In Proc. IEEE 12th Int. Workshop on Micro Electro-Mechanical Systems (MEMS’99), 1999, 612Google Scholar
  124. [124]
    Mochida Y., M. Tamura, K. Ohwada, (1999), A micro micromachined vibrating rate gyro with independent beams for drive and detection modes. In Proc. MEMS’99, 1999, 618Google Scholar
  125. [125]
    Kobayashi S., T. Hara, T. Oguchi, Y. Asaji, K. Yaji, K. Owada, (1999), Double-frame silicon gyroscope packaged under low pressure by wafer bonding. In proceedings of 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 910Google Scholar
  126. [126]
    Alper S. E., T. Akin, (2005), A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate. J. Microelectromech. Syst, 14: 707–717CrossRefGoogle Scholar
  127. [127]
    Lee M., S. Kang, K. Jung, S. Choa, Y. C. Cho, (2005), A high yield rate MEMS gyroscope with a packaged SiOG process. J. Micromech. Microeng, 15: 2003–2012CrossRefGoogle Scholar
  128. [128]
    Iliescu C., G. L. Xu, V. Samper, F. E. H. Tay, (2005), Fabrication of a dielectrophoretic chip with 3D silicon electrodes. J. Micromech. Microeng, 15: 494–500CrossRefGoogle Scholar
  129. [129]
    Chen B., J. Miao, (2007), Influence of deep RIE tolerances on comb-drive actuator performance. J. Phys. D: Appl. Phys, 40: 970–976CrossRefGoogle Scholar
  130. [130]
    Chae J., H. Kulah, K. Najafi, (2002), A Hybrid Silicon-On-Glass (SOG) Lateral Micro-Accelerometer with COMS Readout Circuitry. In proceedings of MEMS 2002, 623–626Google Scholar
  131. [131]
    Richard A. Gottscho, and C.W. Jurgensen, (1992), “Microscopic uniformity in Plasma etching,” J. Vac. Sci. Technol. B, 10(5): 2133–2147CrossRefGoogle Scholar
  132. [132]
    Jansen H., M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, M. Elwenspoek, (1997), RIE lag in high aspect ratio trench etching of silicon. Microelectronic Engineering, 35: 45–50CrossRefGoogle Scholar
  133. [133]
    Chung C., (2004), Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system. J. Micromech. Microeng., 14: 656–662CrossRefGoogle Scholar
  134. [134]
    Ayon A. A., K. Ishihara, R. A. Braff, H. H. Sawin, M. A. Schmidt, (1999), Microfabrication and testing of suspended structure compatible with silicon-on-insulator technology. J. Vac. Sci. Technol. B, 17(4): 1589–1593CrossRefGoogle Scholar
  135. [135]
    Fan J., Y. Zhu, Z. Yang, J. Zhou, X. Liu, G. Yan, (2004), An improved method employed in anodic bonded glass-silicon gyroscopes to avoid footing effect in DRIE. In Proc. of ICSICT’04, Oct. 2004, 1896–1899Google Scholar
  136. [136]
    Kinoshita T., M. Hane, J. P. McVittie, (1996), Notching as an example of charging in uniform high density plasmas. J. Vac. Sci. Technol. B, Microelectron. Process. Phenom. B, 14(1): 560–565CrossRefGoogle Scholar
  137. [137]
    Nozawa T., T. Kinoshita, T. Nishizawa, A. Narai, T. Inoue, A. Nakaue, (1995), The electron charging effects of plasma on notch profile defects. Jpn. J. Appl. Phys., 34(4B): 2107–2113CrossRefGoogle Scholar
  138. [138]
    Matsuura T., M. Chabloz, J. Jiao, Y. Yoshida, K. Tsutsumi, (2001), A method to evade silicon backside damage in deep reactive ion etching for anodically bonded glass-silicon structures. Sensors and Actuators A, 89: 71–75CrossRefGoogle Scholar
  139. [139]
    Yoshida Y., M. Kumagai, K. Tsutsumi, (2003), Study of silicon backside damage in deep reactive ion etching for bonded silicon-glass structures. Microsystem Technology, 9: 167–170CrossRefGoogle Scholar
  140. [140]
    McAuley S. A., H. Ashraf, L. Atabo, A. Cambers, S. Hall, J. Hopkings, G. Nicholls, (2001), Silicon micromachining using a high-density plasma source. Journal of Physics D: Applied Physics, 34: 2769–2774CrossRefGoogle Scholar
  141. [141]
    Shridhar U., et al, (1999), Single crystal silicon microstructures using trench isolation. In Proc. 11th Int. Conf. Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 258Google Scholar
  142. [142]
    Hofmann W., N. C. MacDonald, (1997), Fabrication of multi-level electrically isolated high-aspect-ratio single crystal silicon microstructures. In Proc. IEEE 10th MicroElectro Mechanical Systems (MEMS’97), Negoya, Japan, 1997, 460Google Scholar
  143. [143]
    Brosnihan T. J., J. M. Bustillo, A. P. Pisano, R. T. Howe, (1997), Embedded interconnect and electrical isolation for high-aspect-ratio SOI inertial instruments. In Proc. 9th Int. Conf. Solid-State Sensors and Actuators (Transducers’97), Chicago, IL, 1997, 637–640Google Scholar
  144. [144]
    Young D. J., J. L. Tham, B. E. Boser, (1999), A micromachine-based low phase-noise GHz voltage-controlled oscillator for wireless communications. In proceeding of 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 1386Google Scholar
  145. [145]
    Sun X. Q., K. R. Farmer, W. N. Carr, (1998), A bistable microrelay on two-segment multimorph cantilever actuators. In Proc. IEEE 11th Int. Workshop on Micro Electro-Mechanical Systems (MEMS’98), 1998, 154Google Scholar
  146. [146]
    Zhou S., X. Q. Sun, W. N. Carr, (1997), A micro variable inductor chip using MEMS relays. In Proc. 9th Int. Conf. Solid-State Sensors and Actuators (Transducers’97), Chicago, IL, 1997, 1137Google Scholar
  147. [147]
    Park J. H., H. K. Kim, Y. W. Kwon, Y. K. Kim, (1999), A tunable millimeter filter using coplanar wave guide and micromachined variable capacitor. In proceeding of 10th Int. Conf. on Solid-State Sensors and Actuators (Transducers’99), Sendai, Japan, 1999, 1272Google Scholar
  148. [148]
    Zhang D., Z. Li, T. Li, G. Wu, (2001), A Novel Isolation Technology in Bulk Micromachining Using DRIE and Polysilicon Refill. Journal of Micromechanics and Microengineering, 11: 13–19CrossRefGoogle Scholar
  149. [149]
    Liu A. Q., M. Tang, A. Agarwal, A. Alphones, (2005), Low-loss lateral micromachined switches for high frequency applications. J. Micromech. Microeng, 15: 157–167CrossRefGoogle Scholar
  150. [150]
    Tang M., A. Liu, A. Agarwal, Q. X. Zhang, P. Win, (2004), A new approach of lateral RF MEMS. switch. Analog Integr.Circuits Signal Process, 40: 165–173CrossRefGoogle Scholar
  151. [151]
    Tang M., P. Win, W. L. Goh, A. Agarwal, L. C. Law, A. Liu, (2004), A single-pole double-throw (SPDT) circuit using deep etching lateral metal-contact switches. In IEEE MTT-S Int. Microwave Symp. Digest., 2004, 581–584Google Scholar
  152. [152]
    Miller K., A. Cowen, G. Hames, B. Hardy, (2004), SOIMUMPs Design Handbook. MEMScAP.fGoogle Scholar
  153. [153]
    Amini B. V., R. Abdolvand, F. Ayazi, (2005), Sub-micro-gravity capacitive SOI microaccelerometers In Proceedings of Int. Conf. Solid State Sensors, Actuators and Microsystems (Transducers’ 05), 515–518Google Scholar
  154. [154]
    Amini B. V., R. Abdolvand, F. Ayazi, (2006), A 4.5-mW Closed-Loop DS Micro-Gravity CMOS SOI Accelerometer. In Proceedings of ISSCC, San Francisco, CA, Feb. 2006Google Scholar
  155. [155]
    Amini B. V., F. Ayazi, (2005), Micro-gravity capacitive silicon-on-insulator accelerometers. J. Micromech. Microeng, 15(11): 2113–2120CrossRefGoogle Scholar
  156. [156]
    Kevin A. Shaw, Z. L. Zhang, and N. C. MacDonald, (1994), “SCREAM I: a single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors and Actuators A, 40: 63–70CrossRefGoogle Scholar
  157. [157]
    Vrtacnik D., D. Resnik, U. Aljancic, et al., (2007), Thin FC film for sidewall passivation in Scream process for MEMS. In Proceedings of Africon’07, Africa, Africon, 2007, 26–28Google Scholar
  158. [159]
    Wu J, T. Pike, C. P. Wong, (1999), Novel bi-layer conformal coating for reliability without hermeticity MEMS encapsulation. IEEE Trans. Comp. Packag., Manufact. Technol. C 22: 195Google Scholar
  159. [160]
    Sun C., C. H. Wang, M. H. Tsai, et al., (2008), A novel double-side Cmos-Mems post processing for monolithic sensor integration. In Proceedings of IEEE 21st International Conference on Micro Electro Mechanical Systems (IEEE MEMS’08), Tucson, 2008, 90–93Google Scholar
  160. [161]
    Yang Y. J., W. C. Kuo, (2005), A novel fabrication method for suspended high-aspectratio microstructures. J. Micromech. Microeng, 15: 2184–2193CrossRefGoogle Scholar
  161. [162]
    You L., G. R. Yang, C. I. Lang, et al., (1992), Vapor deposition of parylene films from precursors. In Proceedings of 3rd Biennial Meeting Chem. Perspectives Microelectron. Mater., Boston, 1992Google Scholar
  162. [163]
    Judy M. W., (2004), Evolution of Integrated Inertial MEMS Technology. In proceedings of Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, 2004, 27–30Google Scholar
  163. [164]
    Chen T. D., T. W. Kelly, D. Collins, D. Bain, B. Berthold, T. J. Brosnihan, T. Denison, J. Kuang, M. OKane, J. W. Weigold, (2005), The Next Generation Integrated MEMS and CMOS Process on SOI Wafers for Overdamped Accelerometers. In proceedings of Transducers’05, 2005, 1122–1125Google Scholar
  164. [165]
    Takao H., T. Ichikawa, T. Nakata, K. Sawada, M. Ishida, (2008), Post-CMOS Integration Technology Of Thick-Film SOI MEMS Devices Using Micro Bridge Interconnections. In proceedings of MEMS 2008, 359–362Google Scholar
  165. [166]
    Ghosh S., M. Bayoumi, (2005), On integrated CMOS-MEMS system-on-chip. In Proceedings of The 3rd International IEEE-NEWCAS Conference, 31–34Google Scholar
  166. [167]
    Xie H., L. Erdmann, X. Zhu, K. J. Gabriel, G. K. Fedder, (2002), Post-CMOS processing for high-aspect-ratio integrated silicon microstructures. J. Microelectromechan. Syst., 11: 93–101CrossRefGoogle Scholar
  167. [168]
    Shaw K. A., N. C. MacDonald, (1996), Integrating SCREAM micromachined devices with integrated circuits. In Proceedings of IEEE MEMS’ 96, 1996, 44–48Google Scholar
  168. [169]
    Yan G., et al., (2004), Integrated bulk micromachined gyroscope using deep trench isolation technology. In Proceedings of. IEEE MEMS04, 2004, 605–608Google Scholar

Copyright information

© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhihong Li
    • 1
  • Bo Liu
    • 1
  • Wei Wang
    • 1
  1. 1.Institute of MicroelectronicsPeking UniversityBeijingChina

Personalised recommendations