Skip to main content

Software and Hardware Support and Performance Evaluation in Digital Sonar Design

  • Chapter
  • 2931 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC,volume 0))

Abstract

As very complicated electronic equipment, a digital sonar system can be classified into two parts, the hardware and the software. The hardware consists of a large amount of electronic components, LSI, VLSI and DSP specific chips. It is the physical media for information acquisition, storage, transmission and processing. The software, running on the hardware, determines the information flow direction, combination format, logical relationship and data management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MatLab: http://www.mathworks.com. Accessed 1 Jan 2011

    Google Scholar 

  2. Etter, D. H.: Engineering Problem Solving with ANSIC. Prentice Hall, New Jersey (1995)

    Google Scholar 

  3. Etter, D. H.: Engineering Problem Solving with Matlab, 2nd Edn. Prentice Hall, New Jersey (1997)

    Google Scholar 

  4. Matlab Front-End for Acoustic Toolbox, URL: http://www.curtin.edu.au/curtin/centre/cmst/products/actoolbox/. Accessed 1 Jan 2011

    Google Scholar 

  5. Ritchie, D. M., Thompson, K.: Unix time-sharing system: the C programming language. Bell System Tech. J., 57-6, pp. 1191–2019 (1978)

    Google Scholar 

  6. Kernighan, B. W., Ritchie, D.: The C Programming Language. Prentice Hall, New Jersey (1978)

    Google Scholar 

  7. Lapsley, P., Bior, J.: Choosing DSP processor. DSP Applications, 3-1, pp. 24–32 (1994)

    Google Scholar 

  8. Davis, A.: DSPs and the age of specification. DSP and Multimedia Technology, 3–7, pp. 20–32 (1994)

    Google Scholar 

  9. Kung, S. Y.: VLSI and Modern Signal Processing. Prentice Hall, New Jersey (1985)

    Google Scholar 

  10. Bier, J.: Selecting the right tools for DSP processor software development. DSP and Multimedia Technology, 3–7, pp. 55–62 (1994)

    Google Scholar 

  11. Daly, P.: How to make RAM and KRAKEN Agree in Range-Dependent Nevironment, http://www.mit.edu. Accessed 1 Jan 2011

    Google Scholar 

  12. Acoustic Toolbox, URL: http://stommel.tamu.edu/~baum/linuxlist/linuxlist/node7. html#AcousticsToolbox. Accessed 1 Jan 2011

    Google Scholar 

  13. Porter, M. B., Reiss, E. L.: A numerical method for ocean-acoustic normal modes. J. Acoust. Soc. Amer., 76, pp. 244–252 (1984)

    Article  ADS  MATH  Google Scholar 

  14. Porter, M. B., Reiss, E. L.: A numerical method for bottom interacting ocean acoustic normal modes. J. Acoust. Soc. Amer., 77, pp. 1760–1767 (1985)

    Article  ADS  Google Scholar 

  15. Porter, M. B.: The KRAKEN normal mode program. Rep. SM-245, SACLANTSEN, La Spezia (1991)

    Google Scholar 

  16. Sullivan, E. J., Edelson, G. S.: Model-based broadband towed array processing. In: 147th meeting of the Acoustical Society of America, New York (2004)

    Google Scholar 

  17. Sullivan, E. J., Candy, J. V.: Space-time array processing: the model-based approach. J. Acoust. Soc. Amer., 102-1, pp. 2809–2820 (1997)

    Article  ADS  Google Scholar 

  18. Candy, J. V., Sullivan, E. J.: Passive localization in ocean acoustics: a model based approach. J. Acoust. Soc. Amer., 98-3, pp. 1455–1471 (1995)

    Article  ADS  Google Scholar 

  19. Brown, G. J., Wrigley, S. N.: Feasibility study into the application of computational auditory scene analysis techniques to sonar signals. Technical Report, University of Sheffield, Department of Computer Science (2000)

    Google Scholar 

  20. Baldacci, A., Haralabus, G.: Signal processing for an active sonar system suitable for advanced sensor technology applications and environmental adoption schemes. In: Proc. of EUSIPCO’2006, Florence Italy (2006)

    Google Scholar 

  21. Boashash, B., O’Shea, P.: A methodology for detection and classification of some underwater acoustic signals using time-frequency analysis techniques. IEEE Trans. on Acoustics, Speech, and Signal Processing, 38-11, pp. 1829–1841 (1990)

    Article  Google Scholar 

  22. Bregman, A. S.: Auditory Scene Analysis: the Perceptual Organization of Sound. The MIT Press, London (1990)

    Google Scholar 

  23. Moon, T. K.: Similarity methods in signal processing. IEEE Trans., SP-44-4,pp. 827–883 (1996)

    Google Scholar 

  24. Spiess, F., Kuperman, W.: The marine physical laboratory at Scripps. Oceanography, 16-3, pp. 45–49 (2003)

    Google Scholar 

  25. Scripps Institute of Oceanography: http://www.scripps.edu. Accessed 1 Jan 2011

    Google Scholar 

  26. Woods Hole Oceanographic Institution: http://www.whoi.edu. Accessed 1 Jan 2011

    Google Scholar 

  27. Wocester, P. F., Spindel, R. C.: North Pacific Acoustic Laboratory, http://www.npal.ucsd. Edu. Accessed 1 Jan 2011

    Google Scholar 

  28. Office of Naval Research: http://www.onr.navy.mil. Accessed 1 Jan 2011

    Google Scholar 

  29. Burns, R. F.: The naval research laboratory. Sea Technology, 34-11, pp. 66–77 (1993)

    Google Scholar 

  30. Curtin, T. R.: ONR program in underwater acoustic communications. Sea Technology, 40-5, pp. 17–27 (1999)

    ADS  Google Scholar 

  31. Porter, M. B., Reiss, E. L.: A numerical method for ocean-acoustic normal modes. J. Acoust. Soc. Amer., 76, pp. 244–252 (1984)

    Article  ADS  MATH  Google Scholar 

  32. Porter, M. B., Reiss, E. L.: A numerical method for bottom interacting ocean acoustic normal modes. J. Acoust. Soc. Amer., 77, pp. 1760–1767 (1985)

    Article  ADS  Google Scholar 

  33. Porter, M. B.: The KRAKEN normal mode program. Rep. SM-245, SACLANTSEN, La Spezia (1991)

    Google Scholar 

  34. Scott, R.: Offboard countermeasure technology. Naval Forces, XV-4, pp. 16–22 (1994)

    Google Scholar 

  35. National Research Council of USA (Eds.): The Role of Experimentation in Building Future Naval Forces. NA Press, Washington (2002)

    Google Scholar 

  36. Kennedy, F. D. Jr.: Experimentation: the key to transformation. Undersea Warfare, 5-1, pp. 3–10 (2002)

    Google Scholar 

  37. Carey, W., Dillman, L. M..: Shallow water transmission measurements taken on the New Jersey continental shelf. J. Acoust. Soc. Amer., 89, pp. 1981–1991 (1986)

    Article  Google Scholar 

  38. Tobin, P. E.: Year of the ocean: a chance to consider our own role. Sea Technology, 39-1, pp. 10–14 (1998)

    Google Scholar 

  39. Hamblen, W.: Next generation of stealth submarine. Sea Technology, 39-11,pp. 59–62 (1998)

    Google Scholar 

  40. Douglass, J. W.: Undersea dominance: don’t leave home without it. Sea Technology, 37-11, pp. 10–16 (1996)

    Google Scholar 

  41. http://www.tods.com/defense. Accessed 1 Jan 2011

    Google Scholar 

  42. Jenkins, J. W.: Sonar principles and antisubmarine warfare. Sea Technology, 34-2, pp. 61–71 (1993)

    Google Scholar 

  43. Bradley, M.: Environment Acoustics Pocket Handbook, 2nd Edn. PSI McLean, VA (1996)

    Google Scholar 

  44. Miasnikov, E.: Can Russian strategic submarine survive at sea? the fundamental limits of passive acoustics, Science & Global Security, 4, pp. 213–251 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Q. (2012). Software and Hardware Support and Performance Evaluation in Digital Sonar Design. In: Digital Sonar Design in Underwater Acoustics. Advanced Topics in Science and Technology in China, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18290-7_9

Download citation

Publish with us

Policies and ethics