Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC,volume 0))

  • 3122 Accesses

Abstract

The dry end of modern digital sonar is actually a large, multi-functional digital computer. The design of this computer depends on the configuration of the wet end and on our knowledge and understanding of the ocean environment and the behavior of underwater sound propagation. Therefore, sonar design is a combination of underwater acoustic physics, underwater acoustic engineering, radio electronics and transducer manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urick, R. J.: Sound Propagation in the Sea. Peninsula Pub., Los Altos (1982)

    Google Scholar 

  2. Ziomek, L. J.: Underwater Acoustics: a Linear Systems Theory Approach. Academic Press, Orlando (1985)

    Google Scholar 

  3. Filippi, P. D.: Acoustics: Basic Physics, Theory and Methods. Academic Press, Orlando (1998)

    Google Scholar 

  4. Kuperman, W. A., Lynch, J. F.: Shallow water acoustics. Physics Today, 57-1010, pp. 55–61 (2004)

    Article  Google Scholar 

  5. Johnson, D. H., Dudgeon, D. E.: Array Signal Processing: Concepts and Techniques. Prentice Hall, Englewood (1993)

    MATH  Google Scholar 

  6. Crocker, M. J.: Handbook of Acoustics. Wiley, New York (1998)

    Google Scholar 

  7. Harris, C. M.: Handbook of Acoustical Measurements and Noise Control, 3rd Edn. McGraw-Hill, New York (1991)

    Google Scholar 

  8. Brekhovskikh, L. M.: Fundamentals of Ocean Acoustics, 2nd Edn. Springer-Verlag, New York (1991)

    MATH  Google Scholar 

  9. Coates, R. F. W.: Underwater Acoustic Systems. Halsted Press, New York (1989)

    Google Scholar 

  10. Hassab, J. C.: Underwater Signal and Data Processing. CRC Press, Boca Raton (1989)

    Google Scholar 

  11. Cox, A. W.: Sonar and Underwater Sound. Lexington Books, Lexington (1974)

    Google Scholar 

  12. Urick, R. J.: Ambient Noise in the Sea. Penisula Pub., Wisconsin (1988)

    Google Scholar 

  13. Thorp, W. H.: Analytic description of the low-frequency attenuation coefficient. J. Acoust. Soc. Amer., 42, pp. 270–275 (1967)

    Article  ADS  Google Scholar 

  14. Eckart, C.: The theory of noise in continuous medium. J. Acoust. Soc. Amer., 25, pp. 195–201 (1953)

    Article  MathSciNet  ADS  Google Scholar 

  15. Wenz, G. M.: Acoustic ambient noise in the ocean: spectra and sources. J. Acoust.Soc.Amer., 34, pp. 1936–1956 (1962)

    Article  ADS  Google Scholar 

  16. Cron, B. F., Sherman, C. H.: Spatial correlation function for various noises models. J.Acoust.Soc.Amer. Vol. 34, pp. 1732–1738 (1962)

    Article  ADS  Google Scholar 

  17. Jacobson, M. J.: Space time correlation in spherical and circular noise fields. J. Acoust. Soc. Amer., 34, pp. 971–978 (1962)

    Article  ADS  Google Scholar 

  18. Pieng, T. S., Beng, K. T., Venugopalan, P., Chitre, M. A.: Development of a shallow water ambient noise database. In: Proc. Underwater Technology 2004 (2004)

    Google Scholar 

  19. Andrew, R. K., Howe, B. M., Mercer, J. A.: A comparison of ocean ambient sound levels after 30 years for a coastal site off California. J. Acoust. Soc. Amer., 109, pp. 2386–2387 (2001)

    Google Scholar 

  20. Baggeroer, A. B., Scheer, E. K., Colosi, J. A., Cornuelle, B. D., Dushaw, B. D., Dzieciuch, M. A., Howe, B. M., Mercer, J. A., Spindel, R. C., and Worcester, P. F.: Noise field statistics and coherence on the NPAL array. J. Acoust. Soc. Amer., 109, p. 2386 (2001)

    Google Scholar 

  21. Fisher, F. H., Simmons, V. P.: Sound absorption in sea water. JASA, 62, pp. 558–562 (1977)

    Google Scholar 

  22. Wei, R. C., Chen, C. F., Newhall, A.E., Lynch, J. F., Duda, T. F., Liu, C. S., Liu, P. C.: A preliminary examination of the low-frequency ambient noise field in the south china sea during the 2001 ASIAEX experiment. IEEE Journal of Oceanic Engr. (2001)

    Google Scholar 

  23. Ross, D.: Mechanics of Underwater Noise. Peninsula Pub., Los Altos (1976)

    Google Scholar 

  24. Dowet, M. T., Emling, J. W., Knudsen, V. O.: Survey of Underwater Sound Report No.4. US Navy Report, San Diego (1944)

    Google Scholar 

  25. Stewart, J. L., Westerfield, E. C.: Theory of active sonar detection. In: Proc. IRE, 47, pp. 872–881 (1959)

    Article  Google Scholar 

  26. Middleton, D.: A statistical theory of reverberation and similar first order scattered fields. IEEE Trans., IT-13, pp. 372–414 (1967)

    MathSciNet  Google Scholar 

  27. Gingras, D. F.: Robust broadband matched field processing: performance in shallow water. IEEE J. of Oceanic Engr. 18-3, pp. 253–264 (1993)

    Article  Google Scholar 

  28. Poor, H. V.: Uncertainty tolerance in underwater acoustic signal processing. IEEE J. of Oceanic Engr., 12, pp. 48–65 (1987)

    Article  Google Scholar 

  29. McTaggart, B.: Thirty years of progress in sonar transducer technology. In: Proc. of UDT’91 Paris, pp. 3–11 (1991)

    Google Scholar 

  30. Ma, M. T.: Theory and Application of Antenna Arrays. Wiley, New York (1974)

    Google Scholar 

  31. Fisher, F. H. and Simmons, V. P.: Sound absorption in sea water. JASA Vol. 62, pp. 558–562 (1977)

    Google Scholar 

  32. Van Veen, B. D., Buckley, K. M.: Beamforming: a versatile approach to spatial filtering. IEEE ASSP Magazine, 5-2, pp. 4–24 (1988)

    Article  ADS  Google Scholar 

  33. Frank, T. H., Kesner, J. W., Gruen, H. M.: Conformal array beam patterns and directivity indices. J. Acoust. Soc. Amer., 63, pp. 841–847 (1978)

    Article  ADS  Google Scholar 

  34. Steinberg, B. D.: Principles of Aperture and Array System Design. Wiley, New York (1976)

    Google Scholar 

  35. Andeason, V. C.: Directivity of spherical receiving arrays. J.Acoust. Soc. Amer., 35, pp. 1162–1168 (1963)

    Article  ADS  Google Scholar 

  36. Dolph, C. L.: A current distribution for broadside arrays which optimize the relationship between beam width and side-lobe level. In: Proc. IRE, 34, pp. 335–348 (1946)

    Article  Google Scholar 

  37. Villeneuve, A. T.: Taylor patterns for discrete arrays. IEEE Trans., AP-2, pp. 1089–1093 (1984)

    ADS  Google Scholar 

  38. Taylor, T. T.: Design of line source antenna for narrow beamwidth and low sidelobes. IRE Trans., AP-3, pp. 16–28 (1955)

    Google Scholar 

  39. Elliott, R. S.: Antenna Theory and Design. Prentice Hall, Englewood (1981)

    Google Scholar 

  40. Godara, L. C.: The effect of phase shifter errors on the performance of an antenna array beamformer. IEEE J. Oceanic Engr., 10, pp. 278–284 (1985)

    Article  ADS  Google Scholar 

  41. Tang, W. L., Overview of self-noise measurement of linear towed array, Technical Report, Harbin Engineering Univ. (1998)

    Google Scholar 

  42. Lytle, D. W.: Space time correlation function for surface noise model. J. Acoust. Soc. Amer., 39, pp. 587–590 (1966)

    Article  ADS  Google Scholar 

  43. Curtis, T. E., Ward, R. J.: Digital beam forming for sonar systems. In: IEEE Proc. Part F, 127-4, pp. 257–265 (1980)

    Article  Google Scholar 

  44. Wilson, O. B.: Introduction to the Theory and Design of Sonar Transducers. Penisula Pub., Wisconsin (1988)

    Google Scholar 

  45. Sullivam, E. J., Middleton, D.: Estimation and detection issues in matched field processing. IEEE J. of Oceanic Engr., 18-3, pp. 156–167 (1993)

    Article  Google Scholar 

  46. Baggerroer, A. B., Kuperman, W. A., Mikhalevsky, P. N.: An overview of matched field method in ocean acoustics. IEEE J. of Oceanic Engr., 18, pp. 379–387 (1993)

    Article  Google Scholar 

  47. Munk, W., Worcester, P., Wunsch, C.: Ocean Acoustic Tomography. Cambridge Univ. Press, New York (1995)

    Book  Google Scholar 

  48. Zhou, J. X., Zhang, X. Z.: Resonant interaction of sound wave with internal solitons in the coastal zone. J. Acoust. Soc. Amer., 90, pp. 2042–2054 (1991)

    Article  ADS  Google Scholar 

  49. Cox, H., Zeskind, R. Owen, M.: Robust adaptive beamforming. IEEE Trans., ASSP-35, pp. 1365–1376 (1987)

    Google Scholar 

  50. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A.: Robust Statistics: the Approach Based on Influence Function. Wiley, New York (1986)

    MATH  Google Scholar 

  51. Wilmut, M. J., Ozard, J. M., Keefe, K. O., Musil, M.: A piecewise matched field tracking algorithm. IEEE J. of Oceanic Engr., 23-3, pp.167–173 (1998)

    Article  Google Scholar 

  52. Candy, V. C.: Model-Based Signal Processing. IEEE Press, Wiley, New York (2006)

    Google Scholar 

  53. Kuperman, W. A., D’Spain, G. L. (eds): Ocean Acoustic Interference Phenomena and Signal processing. In: AIP Conference Proceedings (2001)

    Google Scholar 

  54. Levitus, S., Antonov, J. I., Boyer, T. P., Stephens, C.: Warming of the world ocean. Science, 287, pp. 2225–2229 (2000)

    Article  ADS  Google Scholar 

  55. Mercer, J. A.: Report on the second North Pacific acoustic laboratory (NPAL) data analysis workshop. Leavenworth, pp.16 (2000)

    Google Scholar 

  56. Munk, W.: Scattering into the shadow zone. J. Acoust. Soc. Amer., 109, p. 2386 (2001)

    Google Scholar 

  57. Worcester, P. F.: Report on the third North Pacific acoustic laboratory (NPAL) Data Analysis Workshop. Chicago, March, p. 18 (2001)

    Google Scholar 

  58. Worcester, P. F., Howe, B. M., Mercer, J. A., Dzieciuch, M. A.: A comparison of long-range acoustic propagation at ultra-low (28 Hz) and very-low (84 Hz) frequencies. In: Proc. of the US-Russia Workshop on Experimental Underwater Acoustics, Talanov, V.I. (eds), Russian Academy of Sciences, St. Petersburg, pp. 93–104 (1999)

    Google Scholar 

  59. Spindel, R. C. et al.: Results from the acoustic thermometry of ocean climate (ATOC) experiment. In: Proc. of the US-Russia Workshop on Experimental Underwater Acoustics, Talanov, V. I. (ed.), Russian Academy of Sciences, St. Petersburg, pp. 23–32 (1999)

    Google Scholar 

  60. Colosi, J. A., Tappert, M. Dzieciuch, M.: Further analysis of intensity fluctuations from a 3252-km acoustic propagation experiment in the eastern North Pacific Ocean. J. Acoust. Soc. Amer., 110, pp. 163–169 (2001)

    Article  ADS  Google Scholar 

  61. Schmidt, H., Lee, J.: Physics of 3D scattering from rippled seabeds and buried targets in shallow water. J. Acoust. Soc. Amer., 105, pp. 1605–1617 (1999)

    Article  ADS  Google Scholar 

  62. Hinich, M. J.: Maximum-likelihood processing for a vertical array. J. Acoust. Soc. Amer., 54-2, pp. 499–503 (1972)

    ADS  Google Scholar 

  63. Fink, M.: Time-reversed Acoustics. In: Scientific American, pp. 91–97 (1999)

    Google Scholar 

  64. Song, H. C., Kim, S., Hodgkiss, W. S., Kuperman, W. A.: Environmentally adaptive reverberation nulling using a time reversal mirror. JASA, 116, pp. 763–768 (2004)

    Google Scholar 

  65. Edelmann, G. F., Hodgkiss, W. S., Akal, T., Kuperman, W. A., Song, H. C.: An initial demonstration of underwater acoustic communication using time reversal. IEEE JOE, 27, pp. 602–609 (2002)

    Google Scholar 

  66. Roux, P., Kuperman, W. A., Hodgkiss, W. S., Song, H. C., Akal, T., and Stevenson, M.: A non-reciprocal implementation of time reversal in the ocean. JASA, 116, pp. 1009–1015 (2004)

    Google Scholar 

  67. Lingevitch, J. F., Song, H. C., Kuperman, W. A.: Time reversed reverberation focusing in a waveguide. J.Acoust. Soc. Amer., 111, pp. 2609–2614 (2002)

    Article  ADS  Google Scholar 

  68. Rouseff, D., Fox, W. L. J., Jackson, D. R., Jones, C. D., Ritcey, J. A.: Underwater acoustic communication by passive phase conjugation: theory and experimental results. IEEE JOE, 26, pp. 821–831 (2001)

    Google Scholar 

  69. Baggeroer, A. B.: Acoustic telemetry: an overview. IEEE J. Oc. Acoustics, 9-4 (1984)

    Google Scholar 

  70. D’Spain, G. L., Kuperman, W. A.: Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth. JASA, 106-5, pp. 2454–2468 (1999)

    Google Scholar 

  71. Yang, T. C., Yoo, K., Siderius, M.: Internal waves and its effect on signal propagation in the adventure bank. In: Proc. of 8th International Congress on Sound and Vibration, Hong Kong, pp. 3001–3008 (2001)

    Google Scholar 

  72. Munk, W. H., Spindel, R. C., Baggeroer, A., Birdsall, T. G.: The heard island feasibility test. J. Acoust. Soc. Amer., 96, pp. 2330–2342 (1994)

    Article  ADS  Google Scholar 

  73. Kuperman, W. A., Hodgkiss, W. S., Song, H. C., Akal, T., Ferla, C., Jackson, D. R.: Phase conjugation in the ocean: experimental demonstration of an acoustic time-reversal mirror. J. Acoust. Soc. Amer., 103-1, pp. 25–40 (1998)

    Article  ADS  Google Scholar 

  74. Edelmann, G. F., Hodgkiss, W. S., Akal, T., Kuperman, W. A., Song, H. C.: An initial demonstration of underwater acoustic communications using time reversal. IEEE J. Oceanic Eng., 27, pp. 602–609 (2002)

    Article  Google Scholar 

  75. Hodgkiss, W. S., Song, H. C., Kuperman, W. A., Akal, T., Ferla, C., Jackson, D. R.: A long range and variable focus phase-conjugation experiment in shallow water. J. Acoust. Soc. Amer., 105, pp. 1597–1604 (1999)

    Article  ADS  Google Scholar 

  76. Jackson, D. R., Dowling D. R.: Phase conjugation in underwater acoustics. J. Acoust. Soc. Amer., 89, pp. 171–181 (1991)

    Article  ADS  Google Scholar 

  77. Fink, M.: Time reversed acoustics. Scientific American, pp. 91–97 (1999)

    Google Scholar 

  78. Widrow, B., Glover, J. R., McCool, J. M., Kaunitz, J.: Adaptive noise cancelling: principles and applications. In: Proc. IEEE, 63-12, pp. 1692–1716 (1975)

    Article  Google Scholar 

  79. Spiess, A., Kupperman, W.: The marine physical laboratory in Scripps. Oceanography, 16-3, pp. 45–54 (2003)

    Google Scholar 

  80. Etter, P. C.: Underwater Acoustic Modeling: Principles, Techniques and Applications, 2nd Edn. Spon Press, New York (1996)

    MATH  Google Scholar 

  81. Beranek, L. L., Ver, I. L.: Noise and Vibration Control Engineering: Principles and Applications. Wiley, New York (1992)

    Google Scholar 

  82. Boyles, C. A.: Acoustic Waveguides: Applications to Oceanic Science. Wiley, New York (1984)

    Google Scholar 

  83. Edgerton, H. E.: Sonar Images. Prentice-Hall, Englewood (1986)

    Google Scholar 

  84. Frisk, G. V.: Ocean and Seabed Acoustics: A Theory of Wave Propagation, Facsimile Edn. Prentice Hall, Englewood (1994)

    Google Scholar 

  85. Kerman, B. R.: Sea Surface Sound: Natural Mechanisms of Surface Generated Noise in the Ocean. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  86. Kuperman, W. A., Jensen, F. B.: Bottom-Interacting Ocean Acoustics. Plenum Press, New York (1980)

    Google Scholar 

  87. Tolstoy, A.: Matched Field Processing for Underwater Acoustics. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  88. Apel, J. R., Badiey, M., Chiu, C. S., Finette, S., Headrick, R.: An overview of the 1995 SWARM shallow water internal wave acoustic scattering experiment. IEEE J. Oceanic Eng., 22, pp. 465–500 (1997)

    Article  Google Scholar 

  89. Yang, T. C.: Temporal fluctuations of broadband channel impulse functions and underwater acoustic communications at 2–5 kHz. In: Proc. of MTS OCEANS 2002, Biloxi, 4, pp. 2395–2400 (2002)

    Article  Google Scholar 

  90. Rouseff, D., Turgut, A., Wolf, S. N., Finette, S., Orr, M. H., Pasewark, B. H., Apel, J. R., Badiey, M., Chiu, C. S., Headrick, R. H., Lynch, J. F., Kemp, J. N., Newhall, A. E.: Coherence of acoustic modes propagating through shallow water internal waves. J. Acoust. Soc. Amer., 111, pp. 1655–1666 (2002)

    Article  ADS  Google Scholar 

  91. Yang, T. C.: Temporal resolution of time-reversal and passive-phase conjugation for underwater acoustic communications. IEEE J Oceanic Eng., 28, pp.229–245 (2003)

    Article  Google Scholar 

  92. Knudson, V. O., Alford, R. S. and Emling, J. W.: Underwater ambient noise, J. Mar. Res., 7, pp. 410–414 (1948)

    Google Scholar 

  93. National Research Council (Eds): Technology for the United States Navy and Marine Corps. In: Becoming a 21st-Century Force, NA Press, pp. 2000–2035 (1997)

    Google Scholar 

  94. Miasnikov, E.: Can Russian strategic submarine survive at sea? In: The fundamental limits of passive acoustics. Science & Global Security, 4, pp. 213–251 (1994)

    Google Scholar 

  95. Introduction to Naval Weapons Engineering. Military Analysis Network, http://www.fas.org/man/dod-101/navy/docs/. Accessed 1 Jan 2011

    Google Scholar 

  96. Mellen, R. H.: Attenuation in surface duct. J. Acoust. Soc. of Amer., 63, pp. 1624–1628 (1978)

    Article  ADS  Google Scholar 

  97. Wang, D. Z., Shang, E. C.: Underwater Acoustics. Sciences Pub., Beijing (1984)

    Google Scholar 

  98. Winder, A. A.: Sonar system technology. IEEE Trans., SU-20, pp. 291–332 (1975)

    Google Scholar 

  99. Arons, A. B., Yennie, D. R., Cotter, T. P.: Long range shock propagation in underwater explosion phenomena II. US Navy Dept. Bur. Ord., NAVORD Report (1949)

    Google Scholar 

  100. Arons, A. B.: Secondary pressure pulse due to glass globe oscillation underwater explosions II. J. Acoust. Soc. Amer., 20, pp. 277 (1948)

    Article  ADS  Google Scholar 

  101. Acoustic Toolbox, URL: http://stommel.tamu.edu/-baum/linuxlist/node7.html. Accessed 1 Jan 2011

    Google Scholar 

  102. Matlab Front-end for Acoustic Toolbox, URL: http://www.curtin.edu.au/curtin/centre/cmst/products/actoolbox/. Accessed 1 Jan 2011

    Google Scholar 

  103. Porter, M. B., Reiss, E. L.: A numerical method for ocean-acoustic normal modes, J. Acoust. Soc. Amer., 76, pp. 244–152 (1984)

    Article  ADS  MATH  Google Scholar 

  104. Porter, M. B., Reiss, E. L.: A numerical method for bottom interacting ocean normal modes. J. Acoust. Soc. Amer., 77, pp. 1760–1767 (1985)

    Article  ADS  Google Scholar 

  105. Porter, M. B.: A KRAKEN normal mode program. Memorandum rept., SM-245, Saclantcen, Italy (1991)

    Google Scholar 

  106. Porter, M. B., Bucker, H. P.: Gaussian beam tracing for computing ocean acoustic fields. J. Acoust. Soc. Amer., 82, pp. 1349–1359 (1987)

    Article  ADS  Google Scholar 

  107. Green, T. J.: Robust passive sonar. DAPAR Tech. 2000, Dallas (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Q. (2012). General Principles of Sonar Design. In: Digital Sonar Design in Underwater Acoustics. Advanced Topics in Science and Technology in China, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18290-7_4

Download citation

Publish with us

Policies and ethics