Skip to main content

Abstract

The early students of the structure of the vertebrate CNS (see Conn 1948; Clarke and O’Malley 1968; Spillane 1981; Shepherd 1991) had to rely on the quick analysis of either fresh or, at best, partially preserved biological material. Thus, Reil’s introduction of alcohol for fixation in 1809 was an important step. Formalin fixation was introduced much later (Blum 1893). Both Remak’s (1836) description of axons and their sheaths, and Purkyně’s 1838 paper (Purkyně 1838) paper on the cerebellar neurons named after him (see Chap. 1, Fig. 1.1), were based on unstained embryonic material. The first stains to be used, predominantly carmine (von Gerlach 1858), gave rather unsatisfactory pictures. Nevertheless, Deiters (1865) was able to differentiate between dendrites and axons. The introduction of hematoxylin, the Nissl technique, the Weigert technique for selective staining of myelin sheaths, and Golgi’s (1873) method for selectively impregnating nerve cells with silver nitrate opened up vast new possibilities for studying the detailed structure of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775

    CAS  PubMed  Google Scholar 

  • Adams RN, Marsden CA (1982) Electrochemical methods for monoamine measurements in vitro and in vivo. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 15. Plenum, New York, pp 1–74

    Google Scholar 

  • Alger BE, Dhanjal SS, Dingeldine R, Garthwaite J, Henderson G, King GL, Lipton P, North A, Schartzkroin TA, Sears M, Segal M, Whittingham TS, Williams J (1984) Brain slice methods. In: Dingeldine R (ed) Brain slices. Plenum, New York, pp 381–437

    Google Scholar 

  • Ames A, Masland RH (1990) The rabbit retina in vivo. In: Jahnsen H (ed) Preparations of vertebrate central nervous system in vitro. Wiley, Chichester, pp 183–202

    Google Scholar 

  • Ammann D (1986) Ion-selective microelectrodes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Arieli A, Shoham D, Hildesheim R, Grinvald A (1995) Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J Neurophysiol 73:2072–2093

    CAS  PubMed  Google Scholar 

  • Armstrong DM, Harvey RJ, Schild RF (1974) Topographical localization in the olivocerebellar projection: an electrophysiological study in the cat. J Comp Neurol 154:287–302

    CAS  PubMed  Google Scholar 

  • Armstrong-James M, Millar J (1979) Carbon fibre microelectrodes. J Neurosci Methods 1:279–287

    CAS  PubMed  Google Scholar 

  • Augood SJ, McGowan EM, Finsen BR, Heppelman B, Emson PC (1994) Non-radioactive in situ hybridization using alkaline phosphatase-labelled oligonudeotides. In: Wisden W, Morris BJ (eds) In situ hybridization protocols for the brain. Academic, London, pp 81–97

    Google Scholar 

  • Baker R, Precht W (1972) Electrophysiological properties of trochlear motoneurons as revealed by IV nerve stimulation. Exp Brain Res 14:127–157

    CAS  PubMed  Google Scholar 

  • Balice-Gordon RJ, Lichtman JW (1990) In vivo visualization of the growth of pre-and postsynaptic elements of neuromuscular functions in the mouse. J Neurosci 10:894–908

    CAS  PubMed  Google Scholar 

  • Balice-Gordon RJ, Lichtman JW (1993) In vivo observations of pre-and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions. J Neurosci 13:834–855

    CAS  PubMed  Google Scholar 

  • Banker G, Goslin K (1991) Culturing nerve cells. MIT Press, Cambridge, MA

    Google Scholar 

  • Barres BA (1992) The tissue print method. In: Kettenmann H, Grantyn R (eds) Practical electrophysiological methods. A guide for in vitro studies in vertebrate neurobiology. Wiley-Liss, New York, pp 96–100

    Google Scholar 

  • Barres BA, Chun LLY, Corey DP (1990) Ion channels in vertebrate glia. Annu Rev Neurosci 13:441–474

    CAS  PubMed  Google Scholar 

  • Beran RL, Martin GF (1971) Reticulospinal fibers of the opossum, Didelphis virginiana. I. Origin. J Comp Neurol 141:453–466

    CAS  PubMed  Google Scholar 

  • Berger H (1929) Über das Elektrenkephalogramm des Menschen. Arch Psychiat Nervenkr 87:527–570

    Google Scholar 

  • Bielschowsky M (1904) Die Silberimprägnation der Neurofibrillen. J Psychol Neurol (Lpz) 3:169–188

    Google Scholar 

  • Bishop GA, King JS (1982) Intracellular horseradish peroxidase injections for tracing neural connections. In: Mesulam M-M (ed) Tracing neural connections with horseradish peroxidase. Wiley, Chichester, pp 185–247 (IBRO handbook series: methods in the neurociences, vol 1)

    Google Scholar 

  • Bishop GH, Gilson AS (1929) Action potentials from skeletal muscle. Am J Physiol 89:135–151

    Google Scholar 

  • Bishop GH, O’Leary JL (1942) Factors determining the form of the potential record in the vicinity of the synapses of the dorsal nucleus of the lateral geniculate body. J Cell Comp Physiol 19:315–331

    Google Scholar 

  • Björklund A, Hökfelt T (eds) (1983) Methods in chemical neuroanatomy. Elsevier, Amsterdam (Handbook of chemical neuroanatomy, vol 1)

    Google Scholar 

  • Björklund A, Hökfelt T (eds) (1984) Classical transmitters in the CNS. Elsevier, Amsterdam (Handbook of chemical neuroanatomy, vol 2, part I)

    Google Scholar 

  • Björklund A, Lindvall O, Svensson LÅ (1972) Mechanisms of fluorophore formation in the histochemical glyoxylic acid method for monoamines. Histochemie 32:113–131

    PubMed  Google Scholar 

  • Björklund A, Falck B, Lindvall O (1975) Microspectrofluorometric analysis of cellular monoamines after formaldehyde or glyoxylic acid condensation. In: Bradley PB (ed) Methods in brain research. Wiley, London, pp 249–294

    Google Scholar 

  • Blackstad TW (1965) Mapping of experimental axon degeneration by electron microscopy of Golgi preparations. Z Zeilforsch 67:819–834

    CAS  Google Scholar 

  • Blackstad TW (1981) Tract tracing by electron microscopy of Golgi preparations. In: Heimer L, RoBards MJ (eds) Neuroanatomical tract-tracing methods. Plenum, New York, pp 407–440

    Google Scholar 

  • Blakemore C, Molnár Z (1990) Factors involved in the establishment of specific interconnections between thalamus and cerebral cortex. Cold Spring Harbor Symp Quant Biol 55:491–504

    CAS  PubMed  Google Scholar 

  • Blanton MG, Lo Turco JJ, Kriegstein A (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30:203–210

    CAS  PubMed  Google Scholar 

  • Blasdel GG (1989) Visualization of neuronal activity in monkey striate cortex. Annu Rev Physiol 51:561–581

    CAS  PubMed  Google Scholar 

  • Blessing WW, Ding Z-Q, Li Y-W, Gieroba ZJ, Wilson AJ, Hallsworth PG, Wesselingh SL (1994) Transneuronal labelling of CNS neurons with herpes simplex virus. Prog Neurobiol 44:37–53

    CAS  PubMed  Google Scholar 

  • Blum F (1893) Der Formaldehyd als Härtungsmittel. Z Wiss Mikrosk 10:314–315

    Google Scholar 

  • Bodian D (1936) A new method for staining nerve fibres and nerve endings in mounted paraffin sections. Anat Rec 65:89–97

    Google Scholar 

  • Bodis-Wollner I (1982) Evoked potentials. Ann NY Acad Sci Vol 388

    Google Scholar 

  • Bolam JP, Ingham CA (1990) Combined morphological and histochemical techniques for the study of neuronal microcircuits. In: Björklund A, Hökfelt T, Wouterlood FG, van den Pol AN (eds) Analysis of neuronal microcircuits and synaptic interactions. Elsevier, Amsterdam, pp 125-198 (Handbook of chemical neuroanatomy, vol 8)

    Google Scholar 

  • Bolz J, Novak N, Götz M, Bonhoeffer T (1990) Formation of target-specific neuronal projections in organotypic slice cultures from rat visual cortex. Nature 346:359–362

    CAS  PubMed  Google Scholar 

  • Bolz J, Novak N, Staiger V (1992) Formation of specific afferent connections in organotypic slice cultures from rat visual cortex co-cultured with lateral geniculate nucleus. J Neurosci 12:3054–3070

    CAS  PubMed  Google Scholar 

  • Bolz J, Götz M, Hübener M, Novak N (1993) Reconstructing cortical connections in a dish. Trends Neurosci 16:310–316

    CAS  PubMed  Google Scholar 

  • Bourque CW (1990) The isolated and perfused mammalian hypothalamus. In: Jahnsen H (ed) Preparations of vertebrate central nervous system in vitro. Wiley, Chichester, pp 203–232

    Google Scholar 

  • Brazier MAB (1959) The historical development of neurophysiology. In: Field J, Magoun HW, Hall VE (eds) Handbook of physiology, vol 1: neurophysiology. American Physiological Society, Washington DC, pp 1–58

    Google Scholar 

  • Brazier MAB (1961) A history of the electrical activity of the brain. Pitman, London

    Google Scholar 

  • Brodai A (1939) Experimentelle Untersuchungen über retrograde Zellveränderungen in der unteren Olive nach Läsionen des Kleinhirns. Z Ges Neurol Psychiatr 166:624–704

    Google Scholar 

  • Brodai A (1940) Modification of Gudden method for study of cerebral localization. Arch Neurol Psychiatr 43:46–58

    Google Scholar 

  • Brodai A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Brodin L, Grillner S (1990) The lamprey CNS in vitro, an experimentally amenable model for synaptic transmission and integrative functions. In: Jahnsen H (ed) Preparations of vertebrate central nervous system in vitro. Wiley, Chichester, pp 103–153

    Google Scholar 

  • Brown KT, Flaming DG (1986) Advanced micropipette techniques for cell physiology. Wiley, Chichester

    Google Scholar 

  • Buhl EH (1992) Intracellular lucifer yellow injection in fixed brain slices. In: Bolam JP (ed) Experimental neuroanatomy. A practical approach. IRL Press, Oxford, pp 187–212

    Google Scholar 

  • Buhl EH (1993) Intracellular injection in fixed brain slices: a highly versatile tool to examine neuronal geometry in combination with other neuroanatomical techniques. In: Meredith GE, Arbuthnott GW (eds) Morphological investigations of single neurons in vitro. Wiley, Chichester, pp 27-46 (IBRO handbook series: methods in the neurosciences, vol 16)

    Google Scholar 

  • Buhl EH, Lübke J (1989) Intracellular lucifer yellow injection in fixed brain slices combined with retrograde tracing, light and electron microscopy. Neuroscience 28:3–16

    CAS  PubMed  Google Scholar 

  • Bullock TH, Basar E (1988) Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates. Brain Res Rev 13:57–75

    Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates. Freeman, San Francisco

    Google Scholar 

  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    CAS  PubMed  Google Scholar 

  • Chan CY, Nicholson C (1986) Modulation of neuronal activity by applied electric fields in the isolated turtle cerebellum. J Physiol (Lond) 371:89–114

    CAS  Google Scholar 

  • Chmykhova NM, Karamian OA, Kozhanov VM (1991) Sensorimotor connections in the lumbar spinal cord of the young rat: a morphological study. Neuroscience 43:569–576

    CAS  PubMed  Google Scholar 

  • Chronwall BM, Lewis ME, Schwaber JS, O’Donohue TL (1989) In situ hybridization combined with retrograde fluorescent tract tracing. In: Heimer L, Záborsky L (eds) Neuroanatomical tract-tracing methods 2. Plenum, New York, pp 265–297

    Google Scholar 

  • Clarke E, O’Malley CD (1968) The human brain and spinal cord. University of California Press, Berkeley (2nd, revised and enlarged edition: Norman Publishing, San Francisco, 1996)

    Google Scholar 

  • Cochran SL, Kasik P, Precht W (1987) Pharmacological aspects of excitatory synaptic transmission to second-order neurons in the frog. Synapse 1:102–123

    CAS  PubMed  Google Scholar 

  • Cole KS (1968) Membranes, ions and impulses. University of California Press, Berkeley

    Google Scholar 

  • Conn HJ (1948) The history of staining. Biotech Publications, Geneva

    Google Scholar 

  • Connors BW, Kriegstein AR (1986) Cellular physiology of the turtle visual cortex: distinctive properties of pyramidal and stellate neurons. J Neurosci 6:164–177

    CAS  PubMed  Google Scholar 

  • Coons AH, Kaplan MH (1950) Localization of antigens in tissue cells. II. Improvement in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91:1–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cowan WM (1970) Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 217–249

    Google Scholar 

  • Cowan WM, Gottlieb DL, Hendrickson AE, Price JL, Woolsey TL (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37:21–51

    CAS  PubMed  Google Scholar 

  • Cox W (1891) Impregnation des centralen Nervensystems mit Quecksilbersalzen. Arch Mikrosk Anat 37:16–21

    Google Scholar 

  • Cracco RQ, Amassian VE, Maccabee PJ, Cracco JB, Rudell A, Eberle L (1993) Insights into cerebral function revealed by magnetic coil stimulation. Adv Neurology 63:43–50

    CAS  Google Scholar 

  • Cragg BG (1970) What is the signal for chromatolysis? Brain Res 23:1–21

    CAS  PubMed  Google Scholar 

  • Cuello AC (ed) (1983) Immunohistochemistry. Wiley, Chichester (IBRO handbook series: methods in the neurosciences, vol 3)

    Google Scholar 

  • Cuello AC (ed) (1993) Immunohistochemistry II. Wiley, Chichester (IBRO handbook series: methods in the neurosciences, vol 14)

    Google Scholar 

  • Cullheim S, Kellerth JO (1976) Combined light and electron microscopical tracing of neurones, including axons and synaptic terminals, after intracellular injection of horseradish peroxidase. Neurosci Lett 2:307–313

    CAS  PubMed  Google Scholar 

  • Curran T, Morgan JI (1995) Fos: an immediate-early transcription factor in neurons. J Neurobiol 26:403–412

    CAS  PubMed  Google Scholar 

  • Dederen PJWC, Gribnau AAM, Curfs MHJM (1994) Retrograde neuronal tracing with cholera toxin B subunit: comparison of three different visualization methods. Histo-chem J 26:856–862

    CAS  Google Scholar 

  • de Felipe C, Jenkins R, O’Shea R, Williams TSC, Hunt SP (1993) The role of immediate-early genes in the regeneration of the central nervous system. In: Seil FJ (ed) Neural regeneration. Raven, New York, pp 263–271 (Advances in neurology, vol 59)

    Google Scholar 

  • de Olmos J, Ebbesson SOE, Heimer L (1981) Silver methods of the impregnation of degenerating axoplasm. In: Heimer L, RoBards MJ (eds) Neuroanatomical tract-tracing methods. Plenum, New York, pp 117–170

    Google Scholar 

  • Deiters OFK (1865) Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugetiere (M Schultze ed). Vieweg, Braunschweig

    Google Scholar 

  • Dingeldine R (1984) Brain slices. Plenum, New York

    Google Scholar 

  • Dolleman-van der Weel MJ, Wouterlood FG, Witter MP (1994) Multiple anterograde tracing, combining Phaseolus vulgaris leucoagglutinin with rhodamine-and biotinconjugated dextran amine. J Neurosci Methods 51:9–21

    CAS  PubMed  Google Scholar 

  • Dubner R, Ruda MA (1992) Activity-dependent neuronal plasticity following tissue injury ana inflammation. Trends Neurosci 15:96–102

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE (1970) The selective silver-impregnation of degenerating axons and their synaptic endings in non-mammalian species. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 132–161

    Google Scholar 

  • Eccles JC (1951) Interpretation of action potentials evoked in the cerebral cortex. EEG Clin Neurophysiol 3:449–464

    CAS  Google Scholar 

  • Eccles JC (1957) The physiology of nerve cells. John Hopkins Univ Press, Baltimore

    Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Edwards FA (1995) Patch-clamping in brain slices: Synaptic transmission from ATP to long-term potentiation. J Neurosci Methods 59:59–65

    CAS  PubMed  Google Scholar 

  • Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Arch 414:600–612

    CAS  PubMed  Google Scholar 

  • Emson PC (1993) In situ hybridization as a methodological tool for the neuroscientist. Trends Neurosci 16:9–16

    CAS  PubMed  Google Scholar 

  • Erlanger J, Gasser HS (1937) Electrical signs of nervous activity. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  • Falck B, Hillarp NÅ, Thieme G, Thorp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    CAS  Google Scholar 

  • Filipski GT, Wilson MVH (1984) Sudan black B as a nerve stain for whole cleared fishes. Copeia 1:204–208

    Google Scholar 

  • Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res 4:369–374

    CAS  PubMed  Google Scholar 

  • Fredman SM (1987) Intracellular staining of neurons with nickel-lysine. J Neurosci Methods 20:181–194

    CAS  PubMed  Google Scholar 

  • Freeman JA, Nicholson C (1975) Experimental optimization of current source-density technique for anuran cerebellum. J Neurophysiol 38:369–382

    CAS  PubMed  Google Scholar 

  • Fritzsch B (1993) Fast axonal diffusion of 3000 molecular weight dextran amines. J Neurosci Methods 50:95–103

    CAS  PubMed  Google Scholar 

  • Frostig RD, Lieke EE, Ts’o DY, Grinvald A (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci USA 87:6082–6086

    CAS  PubMed  Google Scholar 

  • Fuxe K, Hökfelt T, Jonsson G, Ungerstedt U (1970) Fluorescence microscopy in neuroanatomy. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 275–314

    Google Scholar 

  • Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4:329–342

    PubMed  Google Scholar 

  • Gähwiler BH (1988) Organotypic cultures of neural tissue. Trends Neurosci 11:484–489

    PubMed  Google Scholar 

  • Gähwiler BH, Knöpfel T (1990) Cultures of brain slices. In: Jahnsen H (ed) Preparations of vertebrate central nervous system in vitro. Wiley, Chichester, pp 77–100

    Google Scholar 

  • Galvani A (1791) De viribus electricitatis in motu musculari. Commentarius De Bononiensi Scientarium et Artium Instituto atque Academia Commentarii 7:363–418 (English translation by JF Fulton and MD Stanton 1953: Burndy Library Publ No 10, Norwalk, Connecticut)

    Google Scholar 

  • Garthwaite J, Woodhams PL, Collins MJ, Balazs R (1979) On the preparation of brain slices: morphology and cyclic nucleotides. Brain Res 173:373–377

    CAS  PubMed  Google Scholar 

  • Geddes LA (1972) Electrodes and the measurement of bioelectric events. Wiley, New York

    Google Scholar 

  • Geffard M, Buys RM, Seguela P, Pool CW, Le Moal M (1984) First demonstration of highly specific and sensitive antibodies against dopamine. Brain Res 294:161–165

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical staining method that shows the detailed morphology of neurons, their axons and terminals: immunohisto-chemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 290:219–238

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Sawchenko PE, Carlsen J (1989) The PHA-L anterograde tracing method. In: Heimer L, Záborsky L (eds) Neuroanatomical tract-tracing methods 2. Plenum, New York, pp 19–47

    Google Scholar 

  • Gerstein GL (1970) Functional association of neurons: detection and interpretation. In: Schmitt FO, Quarton GC, Melnechuk T, Adelman G (eds) The neurosciences. Second study program. Rockefeller University Press, New York, pp 648–661

    Google Scholar 

  • Gimlich RL, Braun J (1985) Improved fluorescent compounds for tracing cell lineage. Dev Biol 109:509–514

    CAS  PubMed  Google Scholar 

  • Glees P (1946) Terminal degeneration within the central nervous system as studied by a new silver method. J Neuropathol Exp Neurol 5:54–59

    CAS  PubMed  Google Scholar 

  • Glover JC, Petursdottir G, Jansen KS (1986) Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo. J Neurosci Methods 18:243–254

    CAS  PubMed  Google Scholar 

  • Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual systems with a new method of staining neurons and their processes in fixed tissue. Development 101:697–713

    CAS  PubMed  Google Scholar 

  • Goldstein M, Fuxe K, Hökfelt T (1972) Characterization and tissue localization of catecholamine synthesizing enzymes. Pharmacol Rev 24:293–309

    CAS  PubMed  Google Scholar 

  • Goldstein M, Anagnoste B, Freedman LS, Roffman M, Ebstein RP, Park DH, Fuxe K, Hökfelt T (1973) Characterization, localization and regulation of catecholamine synthesizing enzymes. In: Usdin E, Snyder S (eds) Frontiers in catecholamine research. Pergamon, New York, pp 69–78

    Google Scholar 

  • Golgi C (1873) Sulla struttura della sostanza grigia dell cer-vello. Gazz Med Ital Lombardia 33:244–246

    Google Scholar 

  • Golgi C (1875) Sui gliomi dell cervello. Riv Sper Freniatria Med Leg 1:66–78

    Google Scholar 

  • Golgi C (1879) Di una nuova reazione apparentemente nera delle cellule nervose cerebrali ottenuta col bichloruro di mercurio. Arch Sci Med 3:1–7

    Google Scholar 

  • Grafstein B, Forman BS (1980) Intracellular transport in neurons. Physiol Rev 60:1167–1283

    CAS  PubMed  Google Scholar 

  • Graham J, Gerard RW (1946) Membrane potentials and excitation of impaled single muscle fibers. J Cell Comp Physiol 28:99–117

    CAS  Google Scholar 

  • Graham RC, Karnovsky MI (1966) Glomerular permeability. Ultrastructural cytochemical studies using peroxidase as protein tracers. J Exp Med 124:1123–1134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grantyn R (1992) Pair recording: quantitative reconstruction of a reflex pathway. In: Kettenmann H, Grantyn R (eds) Practical electrophysiological methods. A guide for in vitro studies in vertebrate neurobiology. Wiley-Liss, New York, pp 323–329

    Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    CAS  PubMed  Google Scholar 

  • Griffin G, Watkins LR, Mayer DJ (1979) HRP pellets and slow-release gels: two new techniques for greater localization and sensitivity. Brain Res 168:595–601

    CAS  PubMed  Google Scholar 

  • Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-spread function and lone-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14:2545–2568

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Wouterlood FG (1990) Light and electron microscopic tracing of neuronal connections with Phaseolus vulgaris leucoagglutinin (PHA-L), and combinations with other neuroanatomical techniques. In: Björklund A, Hökfelt T, Wouterlood FG, van den Pol AN (eds) Analysis of neuronal microcircuits and synaptic interactions. Elsevier, Amsterdam, pp 47–124 (Handbook of chemical neuroanatomy, vol 8)

    Google Scholar 

  • Häggqvist G (1936) Analyse der Faserverteilung in einem Rückenmarkquerschnitt (Th 3). Z Mikrosk Anat Forsch 39:1–34

    Google Scholar 

  • Haglund MM, Ojemann GA, Blasdel GG (1993) Optical imaging of bipolar cortical Stimulation. J Neurosurg 78:785–793

    CAS  PubMed  Google Scholar 

  • Hamill OP (1992) Cell-free patch clamp. In: Kettenmann H, Grantyn R (eds) Practical electrophysiological methods. Wiley-Liss, New York, pp 284-288

    Google Scholar 

  • Hammerschlag R, Cyr JL, Brady ST (1994) Axonal transport and the neuronal cytoskeleton. In: Siegel GL, Agranoff BW, Albers RW, Molinoff PB (eds) Basic neurochemistry. Raven, New York, pp 545–571

    Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148

    CAS  PubMed  Google Scholar 

  • Harrison PJ, Hultborn H, Jankowska E, Katz R, Storai B, Zytnicki D (1984) Labelling of interneurones by retrograde transsynaptic transport of horseradish peroxidase from motoneurones in rats and cats. Neurosci Lett 45:15–19

    CAS  PubMed  Google Scholar 

  • Harrison RG (1907) Observations on the living developing nerve fiber. Anat Rec 1:116–118

    Google Scholar 

  • Heffner CD, Lumsden AGS, O’Leary DDM (1990) Target control of collateral extension and directional axon growth in the mammalian brain. Science 247:217–220

    CAS  PubMed  Google Scholar 

  • Heimer L (1970a) Selective silver-impregnation of degenerating axons and their terminals. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 106–113

    Google Scholar 

  • Heimer L (1970b) Bridging the gap between light and electron microscopy in the experimental tracing of fiber connections. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 162–172

    Google Scholar 

  • Heimer L (1995) The human brain and spinal cord, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hendrickson AE (1969) Electron microscopic radioautography: identification of origin of synaptic terminals in normal nervous tissue. Science 165:194–196

    CAS  PubMed  Google Scholar 

  • Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J Neurophysiol 49:1285–1301

    CAS  PubMed  Google Scholar 

  • Hodgkin AL (1967) The conduction of the nervous impulse. Liverpool University Press, Liverpool

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    CAS  Google Scholar 

  • Hökfelt T, Ljungdahl Å (1972) Modification of the Falck-Hillarp formaldehyde fluorescence method using the vibratome: simple, rapid and sensitive localization of catecholamines in sections of unfixed, or formalin fixed brain tissue. Histochemie 29:325–339

    PubMed  Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M, Joh T (1973) Immunohistochemical studies of three catecholamine-synthesizing enzymes: aspects and methodology. Histochemie 33:251–254

    Google Scholar 

  • Hökfelt T, Johansson O, Goldstein M (1984a) Central catecholamine neurons as revealed by immunohistochemistry with special reference to adrenaline neurons. In: Björklund A, Hökfelt T (eds) Classical transmitters in the CNS, part I. Elsevier, Amsterdam, pp 157-276 (Handbook of chemical neuroanatomy, vol 2)

    Google Scholar 

  • Hökfelt T, Martensson R, Björklund A, Kleinau S, Goldstein M (1984b) Distribution maps of tyrosine-hydroxylaseimmunoreactive neurons in the rat brain. In: Björklund A, Hökfelt T (eds) Classical transmitters in the CNS, part I. Elsevier, Amsterdam, pp 277-379 (Handbook of chemical neuroanatomy, vol 2)

    Google Scholar 

  • Holmqvist BI, Ostholm T, Ekström P (1992) Dil tracing in combination with immunocytochemistry for analysis of connectivities and chemoarchitectonics of specific neural systems in a teleost, the Atlantic salmon. J Neurosci Methods 42:45–63

    CAS  PubMed  Google Scholar 

  • Honig MC, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103:171–187

    CAS  PubMed  Google Scholar 

  • Honig MC, Hume RI (1989) Dil and DiO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci 12:333–341

    CAS  PubMed  Google Scholar 

  • Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods 25:1–11

    CAS  PubMed  Google Scholar 

  • Horsley V, Clarke RH (1908) The structure and functions of the cerebellum examined by a new methods. Brain 31:45–124

    Google Scholar 

  • Hounsgaard J, Midtgaard J (1988) Intrinsic determinants of firing pattern in Purkinje cells of the turtle cerebellum in vitro. J Physiol (Lond) 402:731–739

    CAS  Google Scholar 

  • Hounsgaard J, Nicholson C (1990) The isolated turtle brain and the physiology of neuronal circuits. In: Jahnsen H (ed) Preparations of vertebrate central nervous system in vitro. Wiley, Chichester, pp 279–294

    Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) The use of avidin-biotinperoxidase complex (ABC) in immunoperoxidase techniques. A comparison between ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    CAS  PubMed  Google Scholar 

  • Hubbard JI, Llinás R, Quastel DMJ (1969) Electrophysiological analysis of synaptic transmission. Williams and Wilkins, Baltimore

    Google Scholar 

  • Inoué S (1986) Video microscopy. Plenum, New York

    Google Scholar 

  • Izzo PN (1991) A note on the use of biocytin in anterograde tracing studies in the central nervous system: applications at both light and electron microscopic level. J Neurosci Methods 36:155–166

    CAS  PubMed  Google Scholar 

  • Jahnsen H (1990) Preparations of vertebrate central nervous system in vitro. Wiley, Chichester

    Google Scholar 

  • Jenkins R, McMahon SB, Bond AB, Hunt SP (1993) Expression of c-Jun as a response to dorsal root and peripheral nerve section in damaged and adjacent intact primary sensory neurons in the rat. Eur J Neurosci 5:751–759

    CAS  PubMed  Google Scholar 

  • John H, Birnstiel M, Jones K (1969) RNA-DNA hybrids at the cytological level. Nature 223:582–587

    CAS  PubMed  Google Scholar 

  • Joosten EAJ, van der Ven PFM, Hooiveld MHW, ten Donkelaar HJ (1991) Induction of corticospinal target finding by release of a diffusible, chemotropic factor in cervical spinal grey matter. Neurosci Lett 128:25–28

    CAS  PubMed  Google Scholar 

  • Karamian OA, Kozhanov VM, Chmykhova NM (1991) Relation between structural and release parameters at the young rat sensorimotor connection. Neuroscience 43:577–584

    CAS  PubMed  Google Scholar 

  • Karrer R, Cohen J, Tueting P (1984) Brain and information. Event-related potentials. Ann NY Acad Sci, Vol 425

    Google Scholar 

  • Kater SB, Nicholson C (eds) (1973) Intracellular staining in neurobiology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Katz B (1962) The transmission of impulses from nerve to muscle, and the subcellular unit of synaptic action. Proc R Soc Lond B 155:455–477

    Google Scholar 

  • Kawagoe KT, Zimmerman JB, Wightman RM (1993) Principles of voltammetry and microelectrode surface states. J Neurosci Methods 48:225–240

    CAS  PubMed  Google Scholar 

  • Keifer J, Houk JC (1989) An in vitro preparation for studying motor pattern generation in the cerebellorubrospinal circuit of the turtle. Neurosci Lett 97:123–128

    CAS  PubMed  Google Scholar 

  • Keifer J, Vyas D, Houk JC (1992) Sulforhodamine labeling of neural circuits engaged in motor pattern generation in the in vitro turtle brainstem-cerebellum. J Neurosci 12:3187–3199

    CAS  PubMed  Google Scholar 

  • Kerkut GA, Bagust J (1995) The isolated mammalian spinal cord. Prog Neurobiol 46:1–48

    CAS  PubMed  Google Scholar 

  • Ketchum KL, Haberly LB (1993) Membrane currents evoked by afferent fiber stimulation in rat piriform cortex. 1. Current source-density analysis. J Neurophysiol 69:248–260

    CAS  PubMed  Google Scholar 

  • Kim JH, Dunn MB, Hua Y, Rydberg J, Yae H, Elias SA, Ebner TJ (1989) Imaging of cerebellar surface activation in vivo using voltage sensitive dyes. Neuroscience 31:613–623

    CAS  PubMed  Google Scholar 

  • King MA, Louis PM, Hunter BE, Walker DW (1989) Biocytin: a versatile anterograde neuroanatomical tract-tracing alternative. Brain Res 497:361–367

    CAS  PubMed  Google Scholar 

  • Kita H, Armstrong W (1991) A biocytin-containing compound N-(2-aminoethyl) biotinamide for intracellular labeling and neuronal tracing studies: comparison with biocytin. J Neurosci Methods 37:141–150

    CAS  PubMed  Google Scholar 

  • Kitai ST, Bishop GA (1981) Horseradish peroxidase: intracellular staining of neurons. In: Heimer L, RoBards MJ (eds) Neuroanatomical tract-tracing methods. Plenum, New York, pp 263–277

    Google Scholar 

  • Kitai ST, Penny GR, Chang HT (1989) Intracellular labeling and immunocytochemistry. In: Heimer L, Záborsky L (eds) Neuroanatomical tract-tracing methods 2. Plenum, New York, pp 173–179

    Google Scholar 

  • Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12:400–403

    PubMed  Google Scholar 

  • Kriegstein AR, Connors BW (1986) Cellular physiology of the turtle visual cortex: synaptic properties and in intrinsic circuitry. J Neurosci 7:2488–2492

    Google Scholar 

  • Kristensson K, Olsson Y (1971) Retrograde axonal transport of protein. Brain Res 29:363–365

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Huisman AM (1984) Fluorescent neuronal tracers. In: Fedoroff S (ed) Labeling methods applicable to the study of neuronal pathways. Academic, New York, pp 307–340 (Advances in cell neurobiology, vol 5)

    Google Scholar 

  • Kuypers HGJM, Ugolini G (1990) Viruses as transneuronal tracers. Trends Neurosci 13:71–75

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Bentivoglio M, Catsman-Berrevoets CE, Bharos TB (1980) Double retrograde neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res 40:383–392

    CAS  PubMed  Google Scholar 

  • Kyuhou SI, Okada YC (1993) Detection of magnetic evoked fields associated with synchronous population activities in the transverse CA1 slice of the guinea pig. J Neurophysiol 70:2665–2668

    CAS  PubMed  Google Scholar 

  • Larson-Prior LJ, Ulinski PS, Slater NT (1991) Excitatory amino acid receptor-mediated transmission in geniculo-cortical and intracortical pathways within visual cortex. J Neurophysiol 66:293–306

    CAS  PubMed  Google Scholar 

  • Lasek RJ, Katz MJ (1987) Mechanisms at the axon tip regulate metabolic processes critical to axonal elongation. Prog Brain Res 71:49–60

    CAS  PubMed  Google Scholar 

  • Lasek RJ, Joseph BS, Whitlock DG (1968) Evaluation of a radioautographic neuroanatomical tracing method. Brain Res 8:319–336

    CAS  PubMed  Google Scholar 

  • LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176:1415–1417

    Google Scholar 

  • Lavallée M, Schanne M, Hébert NC (eds) (1969) Glass microelectrodes. Wiley, New York

    Google Scholar 

  • Leonard CM (1979) Degeneration methods in neurobiology. Trends Neurosci 2:156–159

    Google Scholar 

  • Li C-L, McIlwain H (1957) Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissue in vitro. J Physiol (Lond) 139:179–190

    Google Scholar 

  • Lichtman JW, Sutherland WJ, Wilkinson RS (1989) High-resolution imaging of synaptic structure with a simple confocal microscope. New Biol 1:75–82

    CAS  PubMed  Google Scholar 

  • Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124

    CAS  PubMed  Google Scholar 

  • Lieke EE, Frostig RD, Arieli A, Ts’o DYHR, Grinvald A (1989) Optical imaging of cortical activity: real-time imaging using extrinsic dye-signals and high resolution imaging based on slow intrinsic-signals. Annu Rev Physiol 51:543–559

    CAS  PubMed  Google Scholar 

  • Lindvall O, Björklund A (1974) The glyoxylic acid fluorescence histochemical method: a detailed account of the methodology for the visualization of central catecholamine neurons. Histochemistry 39:97–127

    CAS  PubMed  Google Scholar 

  • Lindvall O, Björklund A (1978) Organization of catecholamine neurons in the rat central nervous system. In: Iversen LL, Iversen SD, Snyder SH (eds) Chemical pathways in the brain. Plenum, New York, pp 139–231 (Handbook of psychopharmacology, vol 9)

    Google Scholar 

  • Ling G, Gerard RW (1949) The normal membrane potential of frog sartorius fibers. J Cell Comp Physiol 34:383–396

    CAS  Google Scholar 

  • Ljungdahl Å, Hökfelt T, Goldstein M, Park D (1975) Retrograde peroxidase tracing of neurons combined with transmitter histochemistry. Brain Res 84:313–319

    CAS  PubMed  Google Scholar 

  • Llewellyn-Smith IJ, Pilowsky P, Minson JB (1992) Retrograde tracers for light and electron microscopy. In: Bolam JP (ed) Experimental neuroanatomy. A practical approach. IRL Press, Oxford, pp 31–59

    Google Scholar 

  • Llinás R, Nicholson C (1974) Analysis of field potentials in the central nervous system. In: Stevens CF (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2, part B. Elsevier, Amsterdam, pp 61–83

    Google Scholar 

  • Llinás R, Yarom Y, Sugimori M (1981) Isolated mammalian brain in vitro: new technique for analysis of electrical activity of neuronal circuit function. Fed Proc 40:2240–2245

    PubMed  Google Scholar 

  • Lorente de Nó R (1947a) Action potential of the motoneurones of the hypoglossus nucleus. J Cell Comp Physiol 29:207–287

    Google Scholar 

  • Lorente de Nó R (1947b) A study of nerve physiology. Studies from the Rockefeller Institute, vol 132

    Google Scholar 

  • Lowe J, Cox G (1990) Neuropathological techniques. In: Bancroft JD, Stevens A, Turner DR (eds) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh, pp 343-378

    Google Scholar 

  • Loyez M (1920) Coloration des fibres nerveuses par la méthode à l’hematoxyline au fer après inclusion à la celloidine. C R Séanc Soc Biol Fil 62:511

    Google Scholar 

  • Lubinska L (1964) Axoplasmic streaming in regenerating and in normal nerve fibres. Prog Brain Res 13:1–66

    CAS  PubMed  Google Scholar 

  • Luksch H, Walkowiak W, Munoz A, ten Donkelaar HJ (1996) The use of in vitro preparations of the isolated amphibian CNS in neuroanatomy and electrophysiology. J Neurosci Methods 70:91–102

    CAS  PubMed  Google Scholar 

  • Lumsden AGS, Davies AM (1983) Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor. Nature 306:786–788

    CAS  PubMed  Google Scholar 

  • Lutz PL, Rosenthal M, Sick TJ (1985) Living without oxygen: turtle brain as a model of anaerobic metabolism. Mol Physiol 8:411–525

    CAS  Google Scholar 

  • Magrassi L, Purves D, Lichtman JW (1987) Fluorescent probes that stain living nerve terminals. J Neurosci 7:1207–1214

    CAS  PubMed  Google Scholar 

  • Manns M, Fritzsch B (1991) The eye in the brain: retinoic acid effects morphogenesis of the eye and pathway selection of axons but not the differentiation of the retina in Xenopus laevis. Neurosci Lett 127:150–154

    CAS  PubMed  Google Scholar 

  • Marchi V, Algeri G (1885) Sulle degenerazioni discendenti consecutive a lesioni sperimentale in diverse zone della corteccia cerebrale. Riv Sper Freniatria Med Leg 11:492–494

    Google Scholar 

  • Marinesco G (1898) Veränderungen der Nervencentren nach Ausreissung der Nerven mit einigen Erwägungen betreffs ihrer Natur. Neurol Zentralbl 17:882–890

    Google Scholar 

  • Mcllwain H, Buchel L, Cheshire JD (1951) The inorganic phosphate and phosphocreatine of brain especially during metabolism in vitro. Biochem J 48:12–20

    Google Scholar 

  • Meister M, Wong RO, Baylor DA, Shatz CJ (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252:939–943

    CAS  PubMed  Google Scholar 

  • Meredith GE, Arbuthnott GW (eds) (1993) Morphological investigations of single neurons in vitro. Wiley, Chichester (IBRO handbook series: methods in the neurosciences, vol 16)

    Google Scholar 

  • Merrill EG, Ainsworth A (1972) Glass-coated platinum-plated tungsten microelectrodes. Med Biol Eng 10:662–672

    CAS  PubMed  Google Scholar 

  • Mesulam M-M (1978) Tetramethylbenzidine for horseradish peroxidase neurohistochemistry. A non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    CAS  PubMed  Google Scholar 

  • Mesulam M-M (ed) (1982) Tracing neural connections with horseradish peroxidase. Wiley, Chichester (IBRO handbook series: methods in the neurosciences, vol 1)

    Google Scholar 

  • Midtgaard J (1994) Processing of information from different sources: spatial synaptic integration in the dendrites of vertebrate CNS neurons. Trends Neurosci 17:166–173

    CAS  PubMed  Google Scholar 

  • Millhouse OE (1981) The Golgi methods. In: Heimer L, RoBards MJ (eds) Neuroanatomical tract-tracing methods. Plenum, New York, pp 311–344

    Google Scholar 

  • Misgeld U (1992) Hippocampal slices. In: Kettenmann H, Grantyn R (eds) Practical electrophysiological methods. Wiley-Liss, New York, pp 41-53

    Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG-phenomena. Physiol Rev 65:37–100

    CAS  PubMed  Google Scholar 

  • Miyakawa H, Ross WN, Jaffe D, Callaway JC, Lasser-Ross N, Lisman JE, Johnston D (1992) Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels. Neuron 9:1163–1173

    CAS  PubMed  Google Scholar 

  • Møllgård K, Balslev Y, Stagaard-Janas M, Treherne JM, Saun-ders NR, Nicholls JG (1994) Development of spinal cord in the isolated CNS of a neonatal mammal (the opossum Monodelphis domestica) maintained in longterm culture. J Neurocytol 23:151–165

    PubMed  Google Scholar 

  • Moore RY (1981) Fluorescence histochemical methods. In: Heimer L, RoBards MJ (eds) Neuroanatomical tract-tracing methods. Plenum, New York, pp 441–482

    Google Scholar 

  • Moore RY, Bloom FE (1978) Central catecholamine neurons systems: anatomy and physiology of the dopamine systems. Annu Rev Neurosci 1:129–169

    CAS  PubMed  Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: Involvement of the inducible protooncogenes fos and fun. Annu Rev Neurosci 14:421–451

    CAS  PubMed  Google Scholar 

  • Morgan JI, Curran T (1995) Proto-oncogenes. Beyond second messengers. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 631–642

    Google Scholar 

  • Mori K, Shepherd GM (1979) Synaptic excitation and long-lasting inhibition of mitral cells in the in vitro turtle olfactory bulb. Brain Res 172:155–159

    CAS  PubMed  Google Scholar 

  • Mühlethaler M, de Curtis M, Walton K, Llinás R (1993) The isolated and perfused brain of the guinea pig. Eur J Neurosci 5:915–926

    PubMed  Google Scholar 

  • Näätänen R, Ilmoniemi RJ, Alho K (1994) Magnetoencephalography in studies of human cognitive brain function. Trends Neurosci 17:389–395

    PubMed  Google Scholar 

  • Nance DM, Burns J (1990) Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls. Brain Res Bull 25:139–145

    CAS  PubMed  Google Scholar 

  • Nauta WJH (1950) Ueber die sogenannte terminale Degeneration in Zentralnervensystem und ihre Darstellung durch Silverimprägnation. Schweiz Arch Neurol Psychiatr 66:353–376

    CAS  PubMed  Google Scholar 

  • Nauta WJH, Gygax PA (1951) Silver impregnation of degenerating axon terminals in the central nervous system. 1. Technic. 2. Chemical notes. Stain Technol 26:5–11

    CAS  PubMed  Google Scholar 

  • Nauta WJH, Gygax PA (1954) Silver impregnation of degenerating axons in the central nervous system: a modified technique. Stain Technol 29:91–93

    CAS  PubMed  Google Scholar 

  • Neher E, Sakmann B (1976) Single channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–801

    CAS  PubMed  Google Scholar 

  • Nicholls JG, Stewart RR, Erulkar SD, Saunders NR (1990) Reflexes, fictive respiration and cell division in the brain and spinal cord of the newborn opossum, Monodelphis domestica. J Exp Biol 152:1–15

    CAS  PubMed  Google Scholar 

  • Nicholson C (1973) Theoretical analysis of field potentials in anisotropic ensembles of neuronal elements. IEEE Trans Biomed Eng 20:278–288

    CAS  PubMed  Google Scholar 

  • Nicholson C (1993) Ion-selective microelectrodes and diffusion measurements as tools to explore the brain cell microenvironment. J Neurosci Methods 48:199–213.

    CAS  PubMed  Google Scholar 

  • Nicholson C, Freeman JA (1975) Theory of current source-density analysis and determination or conductivity tensor for anuran cerebellum. J Neurophysiol 38:356–368

    CAS  PubMed  Google Scholar 

  • Nicholson C, Kater SB (1973) The development of intracellular staining. In: Kater SB, Nicholson C (eds) Intracellular staining in neurobiology. Springer, Berlin Heidelberg New York, pp 1–19

    Google Scholar 

  • Nicholson C, Llinás R (1971) Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes. J Neurophysiol 34:509–531

    CAS  PubMed  Google Scholar 

  • Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol (Lond) 321:225–257

    CAS  Google Scholar 

  • Nicholson C, Rice ME (1988) Use of ion-selective microelectrodes and voltammetric microsensors to study brain cell microenvironment. In: Boulton AA, Baker GB, Walz W (eds) Neuromethods: the neuronal microenvironment. Humana, Clifton, pp 247-361

    Google Scholar 

  • Nicholson C, Rice ME (1991) Diffusion of ions and transmitters in the brain cell microenvironment. In: Fuxe K, Agnati LF (eds) Volume transmission in the brain: novel mechanisms for neural transmission. Raven, New York, pp 279–294 (Advances in neuroscience, vol 1)

    Google Scholar 

  • Nishikawa KC (1987) Staining amphibian peripheral nerves with Sudan black B: progressive vs. regressive methods. Copeia 2:489–491

    Google Scholar 

  • Nissl F (1885) Über die Untersuchungsmethoden der Grosshirnrinde. Neurol Zentralbl 4:500–501

    Google Scholar 

  • Nissl F (1892) Über die Veränderungen der Ganglienzellen am Facialiskern des Kaninchens nach Ausreissung der Nerven. Allg Z Psychiat 48:197–198

    Google Scholar 

  • Nissl F (1894) Ueber die sogenannten Granula der Nervenzellen. Neurol Zentralbl 13:676–688

    Google Scholar 

  • Nonidez JF (1939) Studies on the innervation of the heart. I. Distribution of the cardiac nerves with special reference to the identification of the sympathetic and parasympathetic postganglionics. Am J Anat 65:361–413

    Google Scholar 

  • Nunez PL (1981) Electric fields of the brain. The neurophysics of EEG. Oxford University Press, New York

    Google Scholar 

  • Ochs S (1982) Axoplasmic transport and its relation to other nerve functions. Wiley, New York

    Google Scholar 

  • Ochs S, Burger E (1958) Movement of substance proximodistally in nerve axons as studied with spinal cord injections of radioactive phosphorus. Am J Physiol 194:499–506

    CAS  PubMed  Google Scholar 

  • O’Donovan MJ (1989) Motor activity in the isolated spinal cord of the chick embryo: synaptic drive and firing pattern of single motoneurons. J Neurosci 9:943–958

    PubMed  Google Scholar 

  • O’Donovan MJ, Landmesser LT (1987) The development of hindlimb motor activity studied in an isolated preparation of the chick spinal cord. J Neurosci 7:3256–3264

    PubMed  Google Scholar 

  • O’Donovan MJ, Ho S, Sholomenko G, Yee W (1993) Real-time imaging of neurons retrogradely and anterogradely labelled with calcium-sensitive dyes. J Neurosci Methods 46:91–106

    PubMed  Google Scholar 

  • O’Donovan MJ, Ho S, Yee W (1994) Calcium imaging of rhythmic network activity in the developing spinal cord of the chick embryo. J Neurosci 14:6354–6369

    PubMed  Google Scholar 

  • Okada YC, Nicholson C (1988) Magnetic field associated with transcortical currents in turtle cerebellum. Biophys J 53:723–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Leary DDM, Koester SE (1993) Development of projection neuron type, axon pathways, and patterned connections of the mammalian cortex. Neuron 10:991–1006

    PubMed  Google Scholar 

  • Pal J (1887) Ein Beitrag zur Nervenfarbetechnik. Z Wiss Mikrosk 4:92–96

    Google Scholar 

  • Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci USA 64:600–604

    CAS  PubMed  Google Scholar 

  • Parent A, Poitras D, Dubé L (1984) Comparative anatomy of central monoaminergic systems. In: Björklund A, Hökfelt T (eds) Classical transmitters in the CNS, part I. Elsevier, Amsterdam, pp 409–439 (Handbook of chemical neuro-anatomy, vol 2)

    Google Scholar 

  • Perkel DH (1970) Spike trains as carriers of information. In: Schmitt FO, Quarton GC, Melnechuk T, Adelman G (eds) The neurosciences. Second Study Program. Rockefeller University Press, New York, pp 587–596

    Google Scholar 

  • Pitman RM, Tweedle CD, Cohen MJ (1972) Branching of central neurons: intracellular cobalt injection for light and electron microscopy. Science 176:412–414

    CAS  PubMed  Google Scholar 

  • Plenz D, Aertsen A (1993) Current source density profiles of optical recording maps — a new approach to the analysis of spatio-temporal neural activity patterns. Eur J Neurosci 5:437–448

    CAS  PubMed  Google Scholar 

  • Purkyně JE (1838) Bericht über die Versammlung deutscher Naturforscher und Årzte in Prag im September, 1837. Prague Pt3, Sec 5, A. Anat Physiol Verh: 177-180

    Google Scholar 

  • Rager G, Laussmann S, Gallyas F (1979) An improved silver stain for developing nervous tissue. Stain Technol 4:193–200

    Google Scholar 

  • Ramón y Cajal S (1904) Quelques méthodes de coloration des cylindres axes, des neurofibrilles et des nids nerveux. Trav Lab Rech Biol 3:1–7

    Google Scholar 

  • Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system (translated and edited by RM May). Oxford University Press, London (extended reprint: J De Felipe and EG Jones (eds) 1991, Oxford University Press, New York)

    Google Scholar 

  • Ramón-Moliner E (1970) The Golgi-Cox technique. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 32–55

    Google Scholar 

  • Reil JC (1809) Untersuchungen über den Bau des grossen Gehirns im Menschen. Vierte Fortsetzung VIII. Arch Psychol (Halle) 9:136–146

    Google Scholar 

  • Remak R (1836) Verläufige Mittheilung mikroscopischer Beobachtungen über den innern Bau der Cerebrospinalnerven und über die Entwicklung ihrer Formelemente. Arch Anat Physiol: 145-161

    Google Scholar 

  • Rich M, Lichtman JW (1989a) In vivo visualization of preand postsynaptic changes during synapse elimination in reinnervated mouse muscle. J Neurosci 9:1781–1805

    CAS  PubMed  Google Scholar 

  • Rich M, Lichtman JW (1989b) Motor nerve terminal loss from degenerating muscle fibers. Neuron 3:677–688

    CAS  PubMed  Google Scholar 

  • Robinson LR (1969) Bulbospinal fibers and their nuclei of origin in Lacerta viridis demonstrated by axonal degeneration and chromatolysis respectively. J Anat (Lond) 105:59–88

    CAS  Google Scholar 

  • Romijn HJ, de Jong BM, Ruijter JM (1988) A procedure for culturing rat neocortex expiants in a serum-free nutrient medium. J Neurosci Methods 23:75–83

    CAS  PubMed  Google Scholar 

  • Ross WN, Lasser-Ross N (1992) High time resolution imaging of calcium transients with a CCD camera. In: Kettenmann H, Grantyn R (eds) Practical electrophysiological methods. Wiley-Liss, New York, pp 378–382

    Google Scholar 

  • Rovainen CM (1967a) Physiological and anatomical studies on large neurons of central nervous system of the sea lamprey (Petromyzon marinus). I. Müller and Mauthner cells. J Neurophysiol 30:1000–1023

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1967b) Physiological and anatomical studies on large neurons of central nervous system of the sea lamprey (Petromyzon marinus). II. Dorsal cells and giant interneurons J Neurophysiol 30:1024–1042

    CAS  Google Scholar 

  • Ruda M, Coulter JB (1982) Axonal and transneuronal transport of wheat germ agglutinin demonstrated by immunocytochemistry. Brain Res 249:237–246

    CAS  PubMed  Google Scholar 

  • Sagar SM, Sharp FR (1993) Early response genes as markers of neural activity and growth factor action. In: Seil F (ed) Neural injury and regeneration. Raven, New York, pp 273–284 (Advances in neurology, vol 59)

    Google Scholar 

  • Sagar SM, Sharp FR, Curran T (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240:1328–1331

    CAS  PubMed  Google Scholar 

  • Sakmann B, Neher E (1983) Single-channel recording. Plenum, New York

    Google Scholar 

  • Salzberg BM (1989) Optical recording of voltage changes in nerve terminals and in fine neuronal processes. Annu Rev Physiol 51:507–526

    CAS  PubMed  Google Scholar 

  • Sarrafizadeh R, Houk JC (1994) Anatomical organization of the limb premotor network in the turtle (Chrysemys picta) revealed by in vitro transport of biocytin and neurobiotin. J Comp Neurol 344:137–159

    CAS  PubMed  Google Scholar 

  • Saunders NR, Balkwill P, Knott G, Habgood MD, Møllgård K, Treherne JM, Nicholls JG (1992) Growth of axons through a lesion in the intact CNS of fetal rat maintained in longterm culture. Proc R Soc Lond B 250:171–180

    CAS  Google Scholar 

  • Sawchenko PE, Gerfen CR (1985) Plant lectins and bacterial toxins as tools for tracing neuronal connections. Trends Neurosci 8:378–384

    CAS  Google Scholar 

  • Scheibel ME, Scheibel AB (1970) The rapid Golgi method. Indian summer or renaissance. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 1–11

    Google Scholar 

  • Schmued L, Kyriakidis K, Heimer L (1990) In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, fluoro-ruby, within the CNS. Brain Res 526:127–134

    CAS  PubMed  Google Scholar 

  • Schwab ME, Thoenen H (1976) Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study. Brain Res 105:213–227

    CAS  PubMed  Google Scholar 

  • Segundo JP (1970) Communication and coding by nerve cells. In: Schmitt FO, Quarton GC, Melnechuk T, Adelman G (eds) The neurosciences. Second study program. Rockefeller University Press, New York, pp 569–586

    Google Scholar 

  • Sharp FR, Sagar SM, Hicks K, Lowenstein D, Hisanaga KC (1991) c-fos mRNA, Fos, and Fos-related antigen induction by hypertonic saline and stress. J Neurosci 11:2321–2331

    CAS  PubMed  Google Scholar 

  • Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485

    CAS  PubMed  Google Scholar 

  • Shepherd GM (ed) (1990) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Shepherd GM (1991) Foundations of the neuron doctrine. Oxford University Press, New York (History of neuroscience, vol 6)

    Google Scholar 

  • Sherrington CS (1906) The integrative action of the nervous system. Cambridge University Press, Cambridge

    Google Scholar 

  • Skirboll L, Hökfelt T, Norell G, Phillipson O, Kuypers HGJM, Bentivoglio M, Catsman-Berrevoets CE, Visser TJ, Steinbusch H, Verhofstad A, Cuello AC, Goldstein M, Brownstein M (1984) A method for specific transmitter identification of retrogradely labelled neurons: immunofluorescence combined with fluorescence tracing. Brain Res Rev 8:99–127

    CAS  Google Scholar 

  • Skirboll L, Thor K, Heike C, Hökfelt T, Robertson B, Long R (1989) Use of retrograde fluorescent tracers in combination with immunohistochemical methods. In: Heimer L, Záborsky L (eds) Neuroanatomical tract-tracing methods 2. Plenum, New York, pp 5–18

    Google Scholar 

  • Smeets WJAJ, Reiner A (eds) (1994) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith JC, Feldman JL (1987) In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J Neurosci Methods 21:321–333

    CAS  PubMed  Google Scholar 

  • Smith Y, Bolam JP (1992) Combined approaches to experimental neuroanatomy: combined tracing and immunocy-tochemical techniques for the study of neuronal microcircuits. In: Bolam JP (ed) Experimental neuroanatomy. A practical approach. IRL Press, Oxford, pp 239–266

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy CH, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neu-rochem 28:897–916

    CAS  Google Scholar 

  • Somogyi P (1978) The study of Golgi stained cells and of experimental degeneration under the electron microscopy: a direct method for the identification in the visual cortex of three successive links in a neuron chain. Neuroscience 3:167–180

    CAS  PubMed  Google Scholar 

  • Somogyi P, Hodgson AJ, Smith AD (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4:1805–1852

    CAS  PubMed  Google Scholar 

  • Spillane JD (1981) The doctrine of the nerves. Oxford University Press, Oxford

    Google Scholar 

  • Spenger C, Braschler UF, Streit J, Lüscher H-R (1991) An organotypic spinal cord — dorsal root ganglion — skeletal muscle coculture of embryonic rat. I. The morphological correlates of the spinal reflex arc. Eur J Neurosci 3:1037–1053

    PubMed  Google Scholar 

  • Steinbusch HWM (ed) (1987) Monoaminergic neurons: light microscopy and ultrastructure. Wiley, Chichester (IBRO handbook series: methods in the neuroscience, vol 10)

    Google Scholar 

  • Steinbusch HWM, Tilders FJH (1987) Immunohisto chemical techniques for light-microscopical localization of dop-amine, noradrenaline, adrenaline, serotonin and histamine in the central nervous system. In: Steinbusch HWM (ed) Monoaminergic neurons: light microscopy and ultrastructure. Wiley, Chichester, pp 125–166

    Google Scholar 

  • Steinbusch HWM, Verhofstad AAJ, Joosten HWJ (1978) Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3:811–819

    CAS  PubMed  Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG (1970) The unlabeled antibody-enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    CAS  PubMed  Google Scholar 

  • Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14:741–759

    CAS  PubMed  Google Scholar 

  • Stoppini L, Buchs P-A, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    CAS  PubMed  Google Scholar 

  • Strack AM, Loewy AD (1990) Pseudorabies virus: a highly specific transneuronal cell body marker in the sympathetic nervous system. J Neurosci 10:2139–2147

    CAS  PubMed  Google Scholar 

  • Straka H, Dieringer N (1993) Electrophysiological and pharmacological characterization of vestibular inputs to identified frog abducens motoneurons and internuclear neurons in vitro. Eur J Neurosci 5:251–260

    CAS  PubMed  Google Scholar 

  • Streit J, Spenger C, Lüscher H-R (1991) An organotypic spinal cord — dorsal root ganglion — skeletal muscle coculture of embryonic rat. II. Functional evidence for the formation of spinal reflex arcs in vitro. Eur J Neurosci 3:1054–1068

    PubMed  Google Scholar 

  • Stretton AO, Kravitz EA (1968) Neuronal geometry: determination with a technique of intracellular dye injection. Science 162:132–134

    CAS  PubMed  Google Scholar 

  • Sugihara I, Lang EJ, Llinás R (1993) Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. J Physiol (Lond) 470:243–271

    CAS  Google Scholar 

  • Sugimori M, Llinás RR (1990) Real-time imaging of calcium entry in mammalian cerebellar Purkinje cells in vitro. Proc Natl Acad Sci USA 87:5084–5088

    CAS  PubMed  Google Scholar 

  • Syková E (1992) Ionic and volume changes in the microenvironment of nerve and receptor cells. Springer, Berlin Heidelberg New York (Progress in sensory physiology, vol 13)

    Google Scholar 

  • Syková E, Svoboda J, Polák J, Chvátal A (1994) Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat. J Cerebral Blood Flow Metab 14:301–311

    Google Scholar 

  • Tank DW, Sugimori M, Connor JA, Llinás RR (1988) Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242:773–777

    CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ (1976) Descending pathways from the brain stem to the spinal cord in some reptiles. I. Origin. J Comp Neurol 167:421–442

    PubMed  Google Scholar 

  • Tenke CE, Schroeder CE, Arezzo JC, Vaughan HG jr (1993) Interpretation of high-resolution current source density profiles: a simulation of sublaminar contributions to the visual evoked potential. Exp Brain Res 94:183–192.

    CAS  PubMed  Google Scholar 

  • Trojanowski JQ, Gonatas JO, Gonatas NK (1982) Horseradish peroxidase (HRP) conjugates of cholera toxin an lectins are more sensitive retrogradely transported markers than free HRP. Brain Res 231:33–50

    CAS  PubMed  Google Scholar 

  • Türck L (1849) Über sekundäre Erkrankung einzelner Rückenmarkstränge und ihrer Fortsetzungen zum Gehirne. Z Kais Kön Ges Årzte Wien 1:173–176

    Google Scholar 

  • Ugolini G, Kuypers HGJM, Strick PL (1989) Transneuronal transfer of herpes virus from peripheral nerves to cortex and brain stem. Science 243:89–91

    CAS  PubMed  Google Scholar 

  • Valentino KL, Eberwine JH, Barchas DJ (1992) In situ hybridization: application to neurobiology, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Vallee RB, Bloom GS (1991) Mechanisms of fast and slow axonal transport. Annu Rev Neurosci 14:59–92

    CAS  PubMed  Google Scholar 

  • Valverde F (1970) The Golgi method. A tool for comparative structural analysis. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 12–31

    Google Scholar 

  • van Mier P, Lichtman JW (1994) Regenerating muscle fibers induce directional sprouting from nearby nerve terminals: studies in living mice. J Neurosci 14:5672–5686

    PubMed  Google Scholar 

  • Veenman CL, Reiner A, Honig MC (1992) Biotinylated dextran amine as an anterograde tracer for single-and doublelabeling studies. J Neurosci Methods 41:239–244

    CAS  PubMed  Google Scholar 

  • von Gerlach J (1858) Mikroskopische Studien aus dem Gebiet der menschlichen Morphologie. Enke, Erlangen

    Google Scholar 

  • von Gudden B (1870) Experimentaluntersuchungen über das peripherische und centrale Nervensystem. Arch Psychiatr 2:693–724

    Google Scholar 

  • Wähle P (1994) Combining non-radioactive in situ hybridization with immunohistological and anatomical techniques. In: Wisden W, Morris BJ (eds) In situ hybridization protocols for the brain. Academic, London, pp 98-120

    Google Scholar 

  • Wallén P (1993) Analysing the three-dimensional structure of functionally identified neurons using confocal microscopy. In: Meredith GE, Arbuthnott GW (eds) Morphological investigations of single neurons in vitro. Wiley, Chichester, pp 140-154 (IBRO handbook series: methods in the neurosciences, vol 16)

    Google Scholar 

  • Wallén P, Carlsson K, Liljeborg A, Grillner S (1988) Three-dimensional reconstruction of neurons in the lamprey spinal cord in a whole-mount, using a confocal laser scanning microscope. J Neurosci Methods 24:91–100

    PubMed  Google Scholar 

  • Waller A (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerve of the frog, and observations of the alterations produced thereby in the structure of their primitive fibers. Philos Trans 140:423–469

    Google Scholar 

  • Wan XST, Trojanowski JQ, Gonatas JO (1982) Cholera toxin and wheat germ agglutinin conjugates as neuroanatomical probes: their uptake and clearance, transganglionic and retrograde transport and sensitivity. Brain Res 243:215–224

    CAS  PubMed  Google Scholar 

  • Wan XST, Liang F, Moret V, Wiesendanger M, Rouiller EM (1992) Mapping of the motor pathways in rats: C-fos induction by intracortical microstimulation of the motor cortex correlated with efferent connectivity of the site of cortical stimulation. Neuroscience 49:749–761

    CAS  PubMed  Google Scholar 

  • Weigert K (1884) Ausführliche Beschreibung der in No. 2 dieser Zeitschrift erwähnten neuen Färbungsmethode für das Centralnervensystem. Fortsch Med 2:190–191

    Google Scholar 

  • Weil AA (1928) A rapid method for staining myelin sheaths. Arch Neurol Psychiatr 20:392–393

    Google Scholar 

  • Weiss P, Hiscoe HB (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107:315–395

    CAS  PubMed  Google Scholar 

  • Wilkinson DG (ed) (1992) In situ hybridization. A practical approach. IRL Press, Oxford

    Google Scholar 

  • Williams PL, Warwick R (1975) Functional neuroanatomy of man. Churchill Livingstone, Edingburgh

    Google Scholar 

  • Williamson SJ, Romani G, Kaufman L, Modena I (eds) (1983) Biomagnetism. Plenum, New York

    Google Scholar 

  • Williamson SJ, Hoke M, Stroink G, Kotani M (eds) (1989) Advances in biomagnetism. Plenum, New York

    Google Scholar 

  • Woelcke M (1942) Eine neue Methode der Markscheidenfärbung. J Physiol Neurol 51:199–202

    Google Scholar 

  • Woodward SKA, Treherne JM, Knott GW, Fernandez J, Varga ZM, Nicholls JG (1993) Development of connections by axons growing through injured spinal cord of neonatal opossum in culture. J Exp Biol 176:77–88

    CAS  PubMed  Google Scholar 

  • Wouterlood FG (1988) Anterograde neuroanatomical tracing with Phaseolus vulgaris-leucoagglutinin combined with immunocytochemistry of gamma-amino butyric acid, choline acetyltransferase or serotonin. Histochemistry 89:421–428

    CAS  PubMed  Google Scholar 

  • Wouterlood FG, Jorritsma-Byham B (1993) The anterograde neuroanatomical tracer biotinylated dextran-amine: comparison with the tracer PHA-L in preparations for electron microscopy. J Neurosci Methods 48:75–87

    CAS  PubMed  Google Scholar 

  • Wouterlood FG, Jorritsma-Byham B, Goede PH (1990) Combination of anterograde tracing with Phaseolus vulgarisleucoagglutinin, retrograde fluorescent tracing and fixedslice intracellular injection of lucifer yellow. J Neurosci Methods 33:207–217

    CAS  PubMed  Google Scholar 

  • Wouterlood FG, Pattiselanno A, Jorritsma-Byham B, Arts MPM, Meredith GE (1993) Connectional, immunocytochemical and ultrastructural characterization of neurons injected intracellularly in fixed brain tissue. In: Meredith GE, Arbuthnott GW (eds) Morphological investigations of single neurons in vitro. Wiley, Chichester, pp 47-74 (IBRO handbook series: methods in the neurosciences, vol 16)

    Google Scholar 

  • Yamamoto C, McIlwain H (1966) Electrical activities in thin sections from the mammalian brain maintained in chemically defined media in vitro. J Neurochem 13:1333–1343

    CAS  PubMed  Google Scholar 

  • Young WS (1990) In situ hybridization histochemistry. In: Björklund A, Hökfelt T, Wouterlood FG, van den Pol AN (eds) Analysis of neuronal microcircuits and synaptic interactions. Elsevier, Amsterdam, pp 481-512 (Handbook of chemical neuroanatomy, vol 8)

    Google Scholar 

  • Záborsky L, Heimer L (1989) Combinations of tracer techniques, especially HRP and PHA-L, with transmitter identification for correlated light and electron microscopic studies. In: Heimer L, Záborsky L (eds) Neuroanatomical tract-tracing methods 2. Plenum, New York, pp 49-96

    Google Scholar 

  • Záborsky L, Alheid GF, Heimer L (1985) Mapping of transmitter-specific connections: Simultaneous demonstration of anterograde degeneration and changes in the immunostaining pattern induced by lesions. J Neurosci Methods 14:255–266

    Google Scholar 

Lampreys

  • Schober W (1964) Vergleichend-anatomische Untersuchungen am Gehirn der Larven und adulten Tiere von Lampetra fluviatilis (Linné 1758) und Lampetra planeri (Bloch 1784). J Hirnforsch 7:107–209

    Google Scholar 

Cartilaginous fishes

  • Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. US Government Printing Office, Washington DC, pp 117–193

    Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Structure and functional correlation. Springer, Berlin Heidelberg New York

    Google Scholar 

Ray-finned fishes

  • Braford MR jr, Northcutt RG (1983) Organization of the diencephalon and pretectum in ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology, vol 2: higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 117-164

    Google Scholar 

  • Nieuwenhuys R, Pouwels E (1983) The brain stem of actinopterygian fishes. In: Northcutt RG, Davis RE (eds) Fish neurobiology, vol 1. University of Michigan Press, Ann Arbor, pp 25-87

    Google Scholar 

Teleosts

  • Anken RH, Rahmann H (1994) Brain atlas of the adult swordtail fish Xiphophorus helleri and of certain developmental stages. Fischer, Stuttgart

    Google Scholar 

  • Maler L, Sas E, Johnston S, Ellis W (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J Chem Neuroanat 4:1–38

    CAS  PubMed  Google Scholar 

  • Meek J, Joosten HWJ, Steinbusch HWM (1989) The distribution of dopamine-immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol 281:362–383

    CAS  PubMed  Google Scholar 

  • Peter RE, Gill VE (1975) A stereotaxic atlas and technique for forebrain nuclei of the goldfish, Carassius auratus. J Comp Neurol 159:69–102

    CAS  PubMed  Google Scholar 

  • Wullimann MF, Rupp B, Reichert H (1996) Neuroanatomy of the zebrafish brain. A topological atlas. Birkhäuser, Basel

    Google Scholar 

Urodeles

  • Herrick CJ (1930) The medulla oblongata of Necturus. J Comp Neurol 50:1–96

    Google Scholar 

  • Herrick CJ (1933) The amphibian forebrain. VI. Necturus. J Comp Neurol 58:1–288

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, Chicago

    Google Scholar 

Anurans

  • Hoffmann A (1973) Stereotaxic atlas of the toad’s brain. Acta Anat 84:416–451

    CAS  PubMed  Google Scholar 

  • Kemali M, Braitenberg V (1969) Atlas of the frog’s brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wada M, Urano A, Gorbman A (1980) A stereotaxic atlas for diencephalic nuclei of the frog, Rana pipiens. Arch Histol Jpn 43:157–193

    CAS  PubMed  Google Scholar 

Reptiles

  • Distel H (1976) Behavior and electrical brain stimulation in the green iguana, Iguana iguana L. I. Schematic brain atlas and stimulation device. Brain Behav Evol 13:421–450

    CAS  PubMed  Google Scholar 

  • Greenberg N (1982) A forebrain atlas and stereotaxic technique for the lizard, Anolis carolinensis. J Morphol 174:217–236

    Google Scholar 

  • Powers AS, Reiner (1980) A stereotaxic atlas of the forebrain and midbrain of the eastern painted turtle (Chrysemys picta picta). I Hirnforsch 21:125–159

    CAS  Google Scholar 

  • Smeets WJAJ, Hoogland PV, Lohman AHM (1986) A forebrain atlas of the lizard Gekko gecko. J Comp Neurol 254:1–19

    CAS  PubMed  Google Scholar 

Birds

  • Karten HJ, Hodos W (1967) A stereotaxic atlas of the pigeon (Columba livia). Johns Hopkins Press, Baltimore

    Google Scholar 

  • Stokes TM, Leonard CM, Nottebohm F (1974) The telencephalon, diencephalon, and mesencephalon of the canary, Serinus canaria, in stereotaxic coordinates. J Comp Neurol 156:337–374

    CAS  PubMed  Google Scholar 

  • van Tienhoven A, Juhásh LP (1962) The chicken telencephalon, diencephalon and mesencephalon in stereotaxic coordinates. J Comp Neurol 118:185–197

    Google Scholar 

  • Zweers GA (1971) A stereotaxic atlas of the brainstem of the mallard (Anas platyrhynchos L). A stereotaxic apparatus for birds and an investigation of the individual variability of some head structures. Van Gorcum, Assen

    Google Scholar 

Mammals

  • Oswaldo-Cruz E, Rocha-Miranda CE (1968) The brain of the opossum (Didelphis marsupialis) in stereotaxic coordinates. Inst Biofisica, Univ Fed Rio de Janeiro, Rio de Janeiro

    Google Scholar 

Rodents (selected)

  • de Groot J (1959) The rat forebrain in stereotaxic coordinates. Noord-Hollandse Uitgevers Maatschappij, Amsterdam

    Google Scholar 

  • Franklin KBJ, Paxinos G (1996) The mouse brain in stereotactic coordinates. Academic, San Diego

    Google Scholar 

  • Knigge KM, Joseph SA (1968) A stereotaxic atlas of the brain of the golden hamster. In: Hoffmann RA, Robinson PF, Magalhaes H (eds) The golden hamster. Its biology and use in medical research. Iowa State University Press, Ames

    Google Scholar 

  • König JFR, Klippel RA (1963) The rat brain. A stereotaxic atlas of the forebrain and lower parts of the brainstem. Williams and Wilkins, Baltimore

    Google Scholar 

  • Luparello TJ (1967) Stereotaxic atlas of the forebrain of the guinea pig. Karger, Basel

    Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, Sydney

    Google Scholar 

  • Pellegrino LJ, Pellegrino AS, Cushman AJ (1979) A stereotaxic atlas of the rat brain, 2nd edn. Plenum, New York

    Google Scholar 

  • Rössner W (1965) Stereotaktischer Hirnatlas vom Meerschweinchen. Pallas, Lochham

    Google Scholar 

  • Sidman RL, Angevine JB jr, Taber Pierce E (1971) Atlas of the mouse brain and spinal cord. Harvard University Press, Cambridge

    Google Scholar 

  • Slotnick BM, Leonard CM (1975) A stereotaxic atlas of the albino mouse forebrain. Publication (ADM) 75-100, US Dept Health Educ Welfare, Rockville MD

    Google Scholar 

  • Swanson LW (1992) Brain maps. Structure of the rat brain. Elsevier, Amsterdam

    Google Scholar 

  • Wünscher W, Schober W, Werner L (1965) Architektonischer Atlas vom Hirnstamm der Ratte. Hirzel, Leipzig

    Google Scholar 

Lagomorphs

  • Fifková E, Marsala J (1960) Stereotaxic atlas for the rabbit. In: Bures J, Petrán M, Zachar J (eds) Electrophysiological methods in biological research. Publication House Czechoslovak Acad Sci, Prague

    Google Scholar 

  • McBride RL, Klemm WR (1968) Stereotaxic atlas of rabbit brain, based on the rapid method of photography of frozen unstained sections. Comm Behav Biol Part A 2:179–215

    Google Scholar 

Carnivores

  • Berman AL (1968) The brain stem of the cat. A cytoarchitectonic atlas with stereotaxic coordinates. University of Wisconsin Press, Madison

    Google Scholar 

  • Berman AL, Jones EG (1982) The thalamus and basal telencephalon of the cat. A cytoarchitectonic atlas with stereotaxic coordinates. University of Wisconsin Press, Madison

    Google Scholar 

  • Dua-Sharma S, Sharma KN, Jacobs HL (1970) The canine brain in stereotaxic coordinates. MIT Press, Cambridge

    Google Scholar 

  • Lim RKS, Liu C, Moffit RL (1960) A stereotaxic atlas of the dog’s brain. Thomas, Springfield

    Google Scholar 

  • Singer M (1962) The brain of the dog in section. Saunders, Philadelphia

    Google Scholar 

  • Snider RS, Niemer WT (1961) A stereotaxic atlas of the cat brain. University of Chicago Press, Chicago

    Google Scholar 

Primates

  • Emmers R, Akert K (1963) A stereotaxic atlas of the brain of the squirrel monkey (Saimiri sciureus). University of Wisconsin Press, Madison

    Google Scholar 

  • Kusama T, Mabuchi M (1970) Stereotaxic atlas of the brain of Macaca fuscata. University Park Press, Baltimore

    Google Scholar 

  • Manocha SL, Shantha TR, Bourne GH (1968) A stereotaxic atlas of the brain of the cebus monkey (Cebus apella). Clarendon, Oxford

    Google Scholar 

  • Saavedra JP, Mazzuchellu AL (1969) A stereotaxic atlas of the brain of the marmoset (Hapale jacchus). J Hirnforsch 11:105–122

    CAS  PubMed  Google Scholar 

  • Shantha TR, Manocha SL, Bourne GH (1968) A stereotaxic atlas of the Java monkey brain (Macaca irus). Karger, Basel

    Google Scholar 

  • Snider RS, Lee JC (1961) A stereotaxic atlas of the monkey brain (Macaca mulatta). University of Chicago Press, Chicago

    Google Scholar 

  • Tigges J, Shantha TR (1969) A stereotaxic atlas of the tree shrew (Tupaia glis). Williams and Wilkins, Baltimore

    Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J., Nicholson, C. (1998). Notes on Techniques. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics