Skip to main content

Structure and Organisation of Fibre Systems

  • Chapter

Abstract

The science of hodology, from the Greek hodos, meaning road or path, has two principal aims, (a) the determination of the origin(s), course and site(s) of termination of fibre pathways, and (b) the study of the structure and composition of these pathways. During the past 150 years, an enormous body of data has been accumulated on the fibre pathways in the central nervous system of many vertebrate species, but a general hodology has not been developed. The present chapter will attempt to fill this gap. A brief overview of the evolutionary development of fibre compartments (Sect. 3.2) will be followed by some notes on the structure and the synaptic contacts of individual fibres (Sect. 3.3). Then, the origin, course and termination of fibre pathways (Sect. 3.4) and their structure and composition (Sect. 3.5) will be discussed. The final sections will present an outline of the three subdisciplines of hodology (Sect. 3.6) and some functional notes (Sect. 3.7). It should be emphasised that the drawings and photomicrographs in this chapter not only illustrate the text, but are central to its message.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adli DSH, Rosenthal BM, Yuen GL, Ho RH, Cruce WLR (1988) Immunohistochemical localisation of substance P, somatostatin, enkephalin, and serotonin in the spinal cord of the Northern leopard frog, Rana pipiens. J Comp Neurol 275:106–116

    CAS  PubMed  Google Scholar 

  • Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, vol 1. MacMillan, New York

    Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–668

    CAS  PubMed  Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    CAS  PubMed  Google Scholar 

  • Bertolini B (1964) Ultrastructure of the spinal cord of the lamprey. J Ultrastruct Res 11:1–24

    CAS  PubMed  Google Scholar 

  • Biedenbach MA, DeVito HL, Brown AC (1986) Pyramidal tract of the cat: axon size and morphology. Exp Brain Res 61:303–310

    CAS  PubMed  Google Scholar 

  • Binggeli RL, Paule WJ (1969) The pigeon retina: quantitative aspects of the optic nerve and ganglion cell layer. J Comp Neurol 137:1–18

    CAS  PubMed  Google Scholar 

  • Bishop GM, Smith JM (1964) The sizes of nerve fibers supplying cerebral cortex. Exp Neurol 9:483–501

    CAS  PubMed  Google Scholar 

  • Bodian D (1937) The structure of the vertebrate synapse. A study of the axon endings of Mauthner’s cell and neighboring centers in the goldfish. J Comp Neurol 68:117–159

    Google Scholar 

  • Bodian D, Taylor N (1963) Synapse arising at central node of Ranvier, and note on fixation of the central nervous system. Science 139:330–332

    CAS  PubMed  Google Scholar 

  • Boivie J (1979) An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 186:343–370

    CAS  PubMed  Google Scholar 

  • Bok ST (1928) Das Rückenmark. In: Von Möllendorff W (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol 4. Springer, Berlin Heidelberg New York, pp 478–578

    Google Scholar 

  • Bone Q (1960) The central nervous system in amphioxus. J Comp Neurol 115:27–64

    Google Scholar 

  • Bone G (1963) The central nervous system. In: Brodai A, Fänge R (eds) The biology of myxine. Universitetsforlaget, Oslo, pp 50–91

    Google Scholar 

  • Briner RP, Carlton SM, Coggeshall RE, Chung K (1988) Evidence for unmyelinated sensory fibres in the posterior columns in man. Brain 111:999–1007

    PubMed  Google Scholar 

  • Brodin L, Buchanan JT, Hökfelt T, Grillner S, Rehfeld JF, Frey P, Verhofstad AAJ, Dockray GJ, Walsh JH (1988) Immunohistochemical studies of cholecystokinin-like peptides and their relation to 5-HT, CGRP, and bombesin immunoreactivities in the brainstem and spinal cord of lampreys. J Comp Neurol 271:1–18

    CAS  PubMed  Google Scholar 

  • Buchanan JT, Brodin L, Hökfelt T, van Dongen PAM, Grillner S (1987) Survey of neuropeptide-like immunoreactivity in the lamprey spinal cord. Brain Res 408:299–302

    CAS  PubMed  Google Scholar 

  • Bullock TH, Moore JK, Fields RD (1984) Evolution of myelin sheaths: both lamprey and hagfish lack myelin. Neurosci Lett 48:145–148

    CAS  PubMed  Google Scholar 

  • Buma P (1989) Synaptic and nonsynaptic release of neuromediators in the central nervous system. Acta Morphol Neerl-Scand 26:81–113

    CAS  Google Scholar 

  • Buma P, Veening J, Hafmans T, Joosten H (1992) Ultrastructure of the periaqueductal grey matter of the rat: an electron microscopical and horseradish peroxidase study. J Comp Neurol 319:519–535

    CAS  PubMed  Google Scholar 

  • Busch HFM (1961) An anatomical analysis of the white matter in the brain stem of the cat. Thesis, Leiden

    Google Scholar 

  • Busch HFM (1964) Anatomical aspects of the anterior and lateral funiculi at the spinobulbar junction. Prog Brain Res 11:223–237

    CAS  PubMed  Google Scholar 

  • Campbell CBG, Hodos W (1970) The concept of homology and the evolution of the nervous system. Brain Behav Evol 3:353–367

    CAS  PubMed  Google Scholar 

  • Cavalcante LA, Allodi S, Reese BE (1992) Fiber order in the opossum’s optic tract. Anat Embryol 186:589–600

    CAS  PubMed  Google Scholar 

  • Celio MR, Gray EG, Yasargil GM (1979) Ultrastructure of the Mauthner axon collateral and its synapse in the goldfish spinal cord. J Neurocytol 8:19–29

    CAS  PubMed  Google Scholar 

  • Chang HT (1944) High level decussation of the pyramids in the pangolin, Manis pentadactyla dalmanii. J Comp Neurol 81:333–338

    Google Scholar 

  • Christensen BN (1976) Morphological correlates of synaptic transmission in lamprey spinal cord. J Neurophysiol 39:197–212

    CAS  PubMed  Google Scholar 

  • Chung K, Coggeshall RE (1979) Primary afferent axons in the tract of Lissauer in the cat. J Comp Neurol 186:451–464

    CAS  PubMed  Google Scholar 

  • Chung K, Coggeshall RE (1983) Numbers of axons in lateral and ventral funiculi of rat sacral spinal cord. J Comp Neurol 214:72–78

    CAS  PubMed  Google Scholar 

  • Chung K, Coggeshall RE (1983b) Propriospinal fibers in the rat. J Comp Neurol 217:47–53

    CAS  PubMed  Google Scholar 

  • Chung K, Sharma J, Coggeshall RE (1985) Numbers of myelinated and unmyelinated axons in the dorsal, lateral, and ventral funiculi of the white matter of the S2 segment of cat spinal cord. J Comp Neurol 234:117–121

    CAS  PubMed  Google Scholar 

  • Chung K, Langford LA, Applebaum AE, Coggeshall RE (1979) Primary afferent fibers in the tract of the Lissauer in the rat. J Comp Neurol 184:587–598

    CAS  PubMed  Google Scholar 

  • Comans PE, Snow PJ (1981) Rostrocaudal and laminar distribution of spinothalamic neurons in the high cervical spinal cord of the cat. Brain Res 223:123–127

    CAS  PubMed  Google Scholar 

  • Conti F, DeBiasi S, Minelli A, Manzoni T, Sternini C (1993) Calcitonin gene-related peptide (CGRP) in the cat neocortex: evidence for a sparse but widespread network of immunoreactive fibers. Cerebral Cortex 4:97–105

    Google Scholar 

  • de Graaf AS (1967) Anatomical aspects of the cetacean brain stem. Thesis, Leiden

    Google Scholar 

  • De Wied D (1987) Neuropeptides and behavior. In: Adelman G (ed) Encyclopedia of neuroscience, vol IL Birkhäuser, Boston, pp 839-841

    Google Scholar 

  • Dunlop SA, Beazley LD (1984) A morphometric study of the retinal ganglion cell layer and optic nerve from metamorphosis in Xenopus laevis. Vision Res 5:417–427

    Google Scholar 

  • Ebbesson SOE (1967) Ascending axon degeneration following hemisection of the spinal cord in the Tegu lizard (Tupinambis nigropunctatus). Brain Res 5:178–206

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE (1969) Brain stem afferents from the spinal cord in a sample of reptilian and amphibian species. Ann NY Acad Sci 167:80–101

    Google Scholar 

  • Ebbesson SOE (1976) Morphology of the spinal cord. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 697–707

    Google Scholar 

  • Ebbesson SOE, Hodde KC (1981) Ascending spinal systems in the nurse shark, Ginglymostoma cirratum. Cell Tissue Res 216:313–331

    CAS  PubMed  Google Scholar 

  • Faber DS, Korn H (1978) Neurobiology of the Mauthner cell. Raven, New York

    Google Scholar 

  • Flatau E (1897) Das Gesetz der excentrischen Lagerung der langen Bahnen im Rückenmark. Z Klin Med 63:55–152

    Google Scholar 

  • Flechsig P (1876) Die Leitungsbahnen in Gehirn und Rückenmark des Menschen auf Grund entwicklungsgeschichtlicher Untersuchungen dargestellt. Engelmann, Leipzig

    Google Scholar 

  • Franz V (1923) Haut, Sinnesorgane und Nervensystem der Akranier. Jen Z Naturwiss 59:401–526

    Google Scholar 

  • Friedländer A (1898) Untersuchungen über das Rückenmark und das Kleinhirn der Vögel. Neurol Centralbl 17:351–359; 397-409

    Google Scholar 

  • Fuse G (1926) Vergleichend-anatomische Beiträge zur Kenntnis über die sog. obere, zweite oder proximale Pyramidenkreuzung bei Edentaten, sowie bei einigen fliegenden Säugern. Arb Anat Inst Sendai 12:47–92

    Google Scholar 

  • Geri GA, Kimsey RA, Dvorak CA (1982) Quantitative electron microscopic analysis of the optic nerve of the turtle, Pseudemys. J Comp Neurol 207:99–103

    CAS  PubMed  Google Scholar 

  • Goldby F (1939) An experimental investigation of the motor cortex and pyramidal tract of Echidna aculeata. J Anat 73:509–524

    CAS  PubMed  Google Scholar 

  • Goldby F, Kacker GN (1963) A survey of the pyramidal system on the coypu rat, Myocastor coypus. J Anat 97:517–531

    CAS  PubMed  Google Scholar 

  • Goldby F, Robinson LR (1962) The central connexions of dorsal spinal nerve roots and the ascending tracts in the spinal cord of Lacerta viridis. J Anat 96:153–170

    CAS  PubMed  Google Scholar 

  • Grantyn A, Grantyn R (1982) Axonal patterns and sites of termination of cat superior colliculus neurons projecting in the tecto-bulbo-spinal tract. Exp Brain Res 46:243–256

    CAS  PubMed  Google Scholar 

  • Greeff NG, Yasargil GM (1980) Experimental evidence for saltatory propagation of the Mauthner axon impulse in the tench spinal cord. Brain Res 193:47–57

    CAS  PubMed  Google Scholar 

  • Guillery RW, Polley EHH, Torrealba F (1982) The arrangement of axons according to fiber diameter in the optic tract of the cat. J Neurosci 2:714–721

    CAS  PubMed  Google Scholar 

  • Gurdjian ES (1925) Olfactory connections in the albino rat, with special reference to the stria medullaris and anterior commissure. J Comp Neurol 38:127–163

    Google Scholar 

  • Häggqvist G (1936) Analyse der Fasenverteilung in einem Rückenmarkquerschnitt (Th 3). Z Mikrosk Anat Forsch 39:1–34

    Google Scholar 

  • Harding GW, Towe AL (1985) Fiber analysis of the pyramidal tract of the laboratory rat. Exp Neurol 87:503–518

    CAS  PubMed  Google Scholar 

  • Hatschek R (1907) Zur vergleichenden Anatomie des Nucleus ruber tegmenti. Arb Neurol Inst Univ Wien 15:89–136

    Google Scholar 

  • Hayle TH (1973) A comparative study of spinal projections to the brain (except cerebellum) in three classes of poikilothermic vertebrates. J Comp Neurol 149:463–476

    CAS  PubMed  Google Scholar 

  • Heffner R, Masterton B (1975) Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav Evol 12:161–200

    CAS  PubMed  Google Scholar 

  • Heier P (1948) Fundamental principles in the structure of the brain. A study of the brain of Petromyzon fluviatilis. Acta Anat [Suppl] VI:1–213

    Google Scholar 

  • Heller SB, Ulinski PS (1987) Morphology of geniculocortical axons in turtles of the genera Pseudemys and Crysemys. Anat Embryol (Berl) 175:505–515

    CAS  Google Scholar 

  • Herbert J (1993) Peptides in the limbic system: neurochemical codes for co-ordinated adaptive responses to behavioural and physiological demand. Prog Neurobiol 41:723–791

    CAS  PubMed  Google Scholar 

  • Herrick CJ (1927) The amphibian forebrain. IV. The cerebral hemispheres of Amblystoma. J Comp Neurol 43:231–325

    Google Scholar 

  • Herrick CJ (1933) The amphibian forebrain. VI. Necturus. J Comp Neurol 58:1–288

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, Chicago

    Google Scholar 

  • Hildebrand C, Remahl S, Persson H, Bjartmar C (1993) Myelinated nerve fibres in the CNS. Prog Neurobiol 40:319–384

    CAS  PubMed  Google Scholar 

  • Hökfelt T, Ljungdahl A, Steinbusch H, Verhofstad A, Nilsson G, Brodin E, Pernow B, Goldstein M (1978) Immunohistochemical evidence of substance-P like immunoreactivity in some 5-hydroxytryptamine containing neurons in the rat central nervous system. Neuroscience 3:517–538

    PubMed  Google Scholar 

  • Holstege G (1991) An anatomical review of the descending motor pathways and the spinal motor system. Limbic and non-limbic components. Prog Brain Res 87:307–421

    CAS  PubMed  Google Scholar 

  • Honjin R, Sakato S, Yamashita T (1977) Electron microscopy of the mouse optic nerve: a quantitative study of the total optic nerve fibers. Arch Histol Jpn 40:321–332

    CAS  PubMed  Google Scholar 

  • Hughes A (1977) The pigmented-rat optic nerve: fibre count and fibre diameter spectrum. J Comp Neurol 176:263–268

    CAS  PubMed  Google Scholar 

  • Jones BE, Friedman L (1983) Atlas of catecholamine perikarya, varicosities and pathways in the brainstem of the cat. J Comp Neurol 215:382–396

    CAS  PubMed  Google Scholar 

  • Joseph BS, Whitlock DG (1968) Central projections of selected spinal cord roots in anuran amphibians. Anat Rec 160:279–288

    CAS  PubMed  Google Scholar 

  • Karten HJ (1963) Ascending pathways from the spinal cord in the pigeon (Columba livia). Proc 16th Int Congr Cool Wash 2:23

    Google Scholar 

  • Kershaw P, Christensen BN (1980) A quantitative analysis of ultrastructural changes induced by electrical stimulation of identified spinal cord axons in the larval lamprey. J Neurocytol 9:119–138

    CAS  PubMed  Google Scholar 

  • Kirby MA, Clift-Forsberg L, Wilson PD, Rapisardi SC (1982) Quantitative analysis of the optic nerve of the North American opossum (Dedelphis virginiana): an electron microscopic study. J Comp Neurol 211:318–327

    CAS  PubMed  Google Scholar 

  • Korn H (1987) The Mauthner cell. In: Adelman G (ed) Encyclopedia of neuroscience, vol IL Birkhäuser, Boston, pp 617-619

    Google Scholar 

  • Kusuma A, ten Donkelaar HJ, Nieuwenhuys R (1979) Intrinsic Organisation of the spinal cord. In: Gans C (ed) Biology of the reptilia, vol 10: neurology B. Academic, London, pp 59–109

    Google Scholar 

  • Kuypers HGJM (1987) Pyramidal tract. In: Adelman G (ed) Encyclopedia of neuroscience, vol II. Birkhäuser, Boston, pp 1018–1020

    Google Scholar 

  • Landau WM, Clare MH, Bishop GH (1968) Reconstruction of myelinated nerve tract action potentials: an arithmetical method. Exp Neurol 22:480–490

    CAS  PubMed  Google Scholar 

  • Langford LA, Coggeshall RE (1981) Unmyelinated axons in the posterior funiculi. Science 211:176–177

    CAS  PubMed  Google Scholar 

  • Larsen PJ, Hay-Schmidt A, Mikkelsen JD (1994) Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat. J Comp Neurol 342:299–319

    CAS  PubMed  Google Scholar 

  • Lassek AM, Rasmussen GL (1939) The human pyramidal tract. A fiber and numerical analysis. Arch Neurol Psychiatry (Chicago) 42:872–876

    Google Scholar 

  • Lassek AM, Karlsberg P (1956) The pyramidal tract of an aquatic carnivore (seal). J Comp Neurol 106:425–431

    CAS  PubMed  Google Scholar 

  • Lassek AM, Rasmussen GL (1940) A comparative fiber and numerical analysis of the pyramidal tract. J Comp Neurol 72:417–428

    Google Scholar 

  • Lassek AM, Wheatley MD (1945) The pyramidal tract. An enumeration of the large motor cells of area 4 and the axons in the pyramids of the chimpanzee. J Comp Neurol 82-299:302

    Google Scholar 

  • Leenen LPH, Meek J, Posthuma PR, Nieuwenhuys R (1985) A detailed morphometrical analysis of the pyramidal tract of the rat. Brain Res 359:65–80

    CAS  PubMed  Google Scholar 

  • Leghissa S (1956) Contribution ultérieure à une meilleure connaissance de l’appareil de Mauthner chez les poissons et observations sur la morphologie de la fibre. In: Ariëns Kappers J (ed) Progress in neurobiology. Amsterdam, Elsevier, pp 45–62

    Google Scholar 

  • Lennie P (1980) Parallel visual pathways: a review. Vision Res 20:561–594

    CAS  PubMed  Google Scholar 

  • Linke R, Roth G (1990) Optic nerves in plethodontid salamanders (amphibia, urodela): neuroglia, fiber spectrum and myelination. Anat Embryol (Berl) 181:37–48

    CAS  Google Scholar 

  • Linowiecki AJ (1914) The comparative anatomy of the pyramidal tract. J Comp Neurol 24:509–530

    Google Scholar 

  • Lorente de Nó R (1981) The primary acoustic nuclei. Raven, New York

    Google Scholar 

  • Luhan JA (1959) Long survival after unilateral stab wound of medulla with unusual pyramidal tract distribution. Arch Neurol (Chicago) 1:427–434

    CAS  Google Scholar 

  • Lundberg JM, Hökfelt T (1983) Coexistence of peptides and classical neurotransmitters. Trends Neurosci 6:325–333

    CAS  Google Scholar 

  • Lundberg JM, Hökfelt T, Schultzberg M, Uvnäs-Wallenstein K, Köhler C, Said SI (1979) Occurrence of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in certain cholinergic neurons of the cat: evidence from combined immunohistochemistry and acetylcholinesterase staining. Neuroscience 4:1359–1559

    Google Scholar 

  • Mantyh PW (1983) The spinothalamic tract in the primate: a re-examination using SGA-HRP. Neuroscience 9:847–862

    CAS  PubMed  Google Scholar 

  • Mantyh PW, Hunt P (1984) Evidence for cholecystokinin-like immunoreactive neurons in the rat medulla oblongata which project to the spinal cord. Brain Res 291:49–54

    CAS  PubMed  Google Scholar 

  • Martin GF, Fisher AM (1968) A further evaluation of the origin, course and termination of the opossum corticospinal tract. J Neurol Sci 7:177–189

    CAS  PubMed  Google Scholar 

  • Martin GF, Megirian D, Roebuck A (1970) The corticospinal tract of the marsupial phalanger (Trichosus vulpecula). J Comp Neurol 139:245–258

    CAS  PubMed  Google Scholar 

  • Martin GF, Megirian D, Conner JB (1972) The origin, course and termination of the corticospinal tracts of the Tasmanian potoroo (Potorous apicalis). J Anat 111:263–281

    CAS  PubMed  Google Scholar 

  • Maturana HR (1959) Number of fibres in the optic nerve and the number of ganglion cells in the retina of anurans. Nature 183:1406–1407

    CAS  PubMed  Google Scholar 

  • Maturana HR (1960) The fine anatomy of the optic nerve of anurans. An electron microscope study. J Biophys Biochem Cytol 7:107–120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mehler WR (1969) Some neurological species differences — a posteriori. Ann NY Acad Sci 167:424–468

    Google Scholar 

  • Millhouse OE (1969) A Golgi study of the descending medial forebrain bundle. Brain Res 15:341–363

    CAS  PubMed  Google Scholar 

  • Münzer E, Wiener H (1898) Beiträge zur Anatomie und Physiologie des Centralnervensystems der Taube. Monatsschr Psychiatr Neurol 3:379–406

    Google Scholar 

  • Münzer E, Wiener H (1910) Experimentelle Beiträge zur Lehre von den endogenen Faersystemen des Rückenmarkes. Monatsschr Psychiatr Neurol 28:1–25

    Google Scholar 

  • Nicol JM, Walmsley B (1991) A serial section electron microscope study of an identified la afferent collateral in the cat spinal cord. J Comp Neurol 413:247–277

    Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitechture of the brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nieuwenhuys R (1994) The neocortex: an overview of its evolutionary development, structural organization and synaptology. Anat Embryol 190:307–337

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Cornelisz M (1971) Ascending projections from the spinal cord in the axolotl (Ambystoma mexicanum). Anat Rec 169:388

    Google Scholar 

  • Nieuwenhuys R, Verrijdt PWY (1983) Structure and connections of the telencephalon of the teleost fish Xenomystis nigri. II. The area dorsalis. Acta Morphol Neerl Scand 21:330

    Google Scholar 

  • Nieuwenhuys R, Pouwels E, Veening JG (1978) Structure and composition of the medial forebrain bundle. Neurosci Lett [Suppl] 1:190

    Google Scholar 

  • Nieuwenhuys R, Geeraedts LMG, Veening JG (1982) The medial forebrain bundle of the rat. I. General introduction. J Comp Neurol 206:49–81

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Veening JG, van Domburg P (1989) Core and paracores: some new chemoarchitectural entities in the mammalian neuraxis. Acta Morphol Neerl Scand 26:131–163

    CAS  Google Scholar 

  • Northcutt RG (1984) Evolution of the vertebrate central nervous system: patterns and processes. Am Zool 24:701–716

    Google Scholar 

  • O’Flaherty JJ (1971) The optic nerve of the Mallard duck: fiber-diameter frequency distribution and physiological properties. J Comp Neurol 143:17–24

    PubMed  Google Scholar 

  • Ogden TE, Miller RF (1966) Studies of the optic nerve of the rhesus monkey: nerve fiber spectrum and physiological properties. Vision Res 6:485–506

    CAS  PubMed  Google Scholar 

  • Öhman P (1977) Fine structure of the optic nerve of Lampetra fluviatilis (Cyclostomi). Vision Res 17:719–722

    PubMed  Google Scholar 

  • Oka Y, Satou M, Ueda K (1986) Ascending pathways from the spinal cord in the him salmon (Landlocked red salmon, Oncorhynchus nerka). J Comp Neurol 254:104–112

    CAS  PubMed  Google Scholar 

  • Pritz MB, Northcutt RG (1980) Anatomical evidence for an ascending somatosensory pathway to the telencephalon in crocodiles, Caiman crocodilus. Exp Brain Res 40:342–345

    CAS  PubMed  Google Scholar 

  • Ralston DD, Milroy AM, Ralston III HJ (1987) Non-myelinated axons are rare in the medullary pyramids of the macaque monkey. Neurosci Lett 73:215–219

    CAS  PubMed  Google Scholar 

  • Ramón y Cajal S (1909) Histologie du système nerveux de l’homme et des vertébrés. Tome I. Maloine, Paris

    Google Scholar 

  • Reese BE, Guillery RW (1987) Distribution of axons according to diameter in the monkey’s optic tract. J Comp Neurol 260:453–460

    CAS  PubMed  Google Scholar 

  • Reese BE, Ho K-Y (1988) Axon diameter distributions across the monkey’s optic nerve. Neuroscience 27:205–214

    CAS  PubMed  Google Scholar 

  • Reese BE, Cowey A (1990) Fibre organisation of the monkey’s optic tract: I. Segregation of functionally distinct optic axons. J Comp Neurol 295:385–400

    CAS  PubMed  Google Scholar 

  • Retzius G (1891) Zur Kenntniss der Centralnervensystems von Amphioxus lanceolatus. Biol Untersuch 2:29–46

    Google Scholar 

  • Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–351

    CAS  PubMed  Google Scholar 

  • Rexed B (1964) Some aspects of the cytoarchitectonics and synaptology of the spinal cord. Prog Brain Res 11:58–92

    CAS  PubMed  Google Scholar 

  • Riley HA (1960) An atlas of the basal ganglia, brain stem and spinal cord. Hafner, New York

    Google Scholar 

  • Rodieck RW (1979) Visual pathways. Annu Rev Neurosci 2:193–225

    CAS  PubMed  Google Scholar 

  • Roeling TAP, Veening JG, Kruk MR, Peters JPW, Vermelis MEJ, Nieuwenhuys R (1994) Efferent connections of the hypothalamic ‘aggression area’ in the rat. Neuroscience 59:1001–1024

    CAS  PubMed  Google Scholar 

  • Rohde E (1888a) Histologische Untersuchungen über das Nervensystem von Amphioxus. Zool Anz 11:190–196

    Google Scholar 

  • Rohde E (1888b) Histologische Untersuchungen über das Nervensystem von Amphioxus lanceolatus. Schneiders Zool Beitr 2:169–211

    Google Scholar 

  • Ronan MC (1983) Ascending and descending spinal projections in petromyzontid and myxinoid agnathans. PhD dissertation, University of Michigan, Ann Arbor

    Google Scholar 

  • Roth G (1987) Visual behavior in salamanders. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rovainen CM (1967) Physiological and anatomical studies on large neurons of central nervous system of the sea lamprey (Petromyzon marinus). I. Müller and Mauthner cells. J Neurophysiol 30:1000–1023

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1974a) Synaptic interactions of identified cells in the spinal cord of the sea lamprey. J Comp Neurol 154:189–206

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1974b) Synaptic interactions of reticulospinal neurons and nerve cell sin the spinal cord of the sea lamprey. J Comp Neurol 154:207–224

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1978) Müller cells, ‘Mauthner’ cells, and other identified reticulospinal meurons in the lamprey. In: Faber DS, Korn H (eds) Neurobiology of the Mauthner cell. Raven, New York, pp 245-269

    Google Scholar 

  • Rovainen CM, Johnson PA, Roach EA, Mankovsky JA (1973) Projections of individual axons in lamprey spinal cord determined by tracings through serial sections. J Comp Neurol 149:193–202

    CAS  PubMed  Google Scholar 

  • Ruiz MS, Anadón R (1989) Some observations on the fine structure of the ROHDE cells of the spinal cord of the amphioxus, Branchiostoma lanceolatum (Cephalochordata). J Hirnforsch 6:671–677

    Google Scholar 

  • Russchen FT, Jonker AJ (1988) Efferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko. J Comp Neurol 276:61–80

    CAS  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1955) The inferior olive. A Golgi study. J Comp Neurol 102:77–131

    CAS  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1958) Structural substrates for integrative patterns in the brain stem reticular core. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain. Henry Ford Hospital International Symposium. Little Brown, Boston, pp 31–68

    Google Scholar 

  • Schoen JHR (1964) Comparative aspects of the descending fibre systems in the spinal cord. Prog Brain Res 11:203–222

    CAS  PubMed  Google Scholar 

  • Sereno MI (1985) Tectoreticular pathways in the turtle Pseudemys scripta. I. Morphology of tectoreticular axons. J Comp Neurol 223:48–90

    Google Scholar 

  • Sereno MI, Ulinski PS (1985) Tectoreticular pathways in the turtle Pseudemys scripta. II. Morphology of tectoreticular cells. J Comp Neurol 223:91–114

    Google Scholar 

  • Sharma SC, Dunn-Meynell AA, Bodylack MA (1985) A note on a tectal neuron projecting via the tectobulbar tract in teleosts. Neurosci Lett 59:265–270

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Ohgaki T, Sugiuchi Y, Futami T (1992a) Morphology of single medial vestibulospinal tract axons in the upper cervical spinal cord of the cat. J Comp Neurol 316:151–172

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Ohgaki T, Yuriko S, Futami T, Kakei S (1992b) Functional synergies of neck muscles innervated by single medial vestibulospinal axons. Ann NY Acad Sci 656:507–518

    CAS  PubMed  Google Scholar 

  • Sie PG (1956) Localization of fibre systems within the white matter of the medulla oblongata and the cervical cord in man. Thesis, Leiden

    Google Scholar 

  • Sipe JC, Moore RY(1977) The lateral hypothalamic area. An ultrastructural analysis. Cell Tissue Res 179:177–196

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes: structure and functional correlations. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Smith DS, Järlfors U, Beránek R (1970) The organization of synaptic axoplasm in the lamprey (Petromyzon marinus) central nervous system. J Cell Biol 46:199–219

    CAS  PubMed  Google Scholar 

  • Sotelo C, Palay SL (1970) The fine structure of the lateral vestibular nucleus in the rat. II. Synaptic organization. Brain Res 18:93–115

    CAS  PubMed  Google Scholar 

  • Stefanelli A (1934) I centri tegmentali dell’ encefalo dei Petromizonti. Arch Zool Ital 20:117–202

    Google Scholar 

  • Stone J, Campion JE (1978) Estimate of the number of myelinated axons in the cat’s optic nerve. J Comp Neurol 180:799–806

    CAS  PubMed  Google Scholar 

  • Swanson LW (1989) The neural basis of motivated behavior. Acta Morphol Neerl Scand 26:165–176

    CAS  Google Scholar 

  • Swanson LW (1991) Biochemical switching in hypothalamic circuits mediating responses to stress. Prog Brain Res 87:181–200

    CAS  PubMed  Google Scholar 

  • Swanson LW, Mogenson GJ, Gerfen CR, Robinson P (1984) Evidence for a projection from the lateral preoptic area and substantia innominata to the ‘mesencephalic locomotor region’ in the rat. Brain Res 295:161–178

    CAS  PubMed  Google Scholar 

  • Tapp RL (1974) Axon numbers and distribution, myelin thickness, and the reconstruction of the compound action potential in the optic nerve of the teleost: Eugenes plumieri. J Comp Neurol 153:267–274

    CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ, Nieuwenhuys R (1979) The brainstem. In: Gans C (ed) Biology of the reptilia, vol 10: neurology B. Academic, London, pp 133–200

    Google Scholar 

  • Towe AL (1973) Relative numbers of pyramidal tract neurons in mammals of different sizes. Brain Behav Evol 7:1–17

    CAS  PubMed  Google Scholar 

  • Tretjakoff D (1909a) Das Nevensystem von Amnmcoetes. I. Das Rückenmark. Arch Mikrosk Anat 73:607–680

    Google Scholar 

  • Tretjakoff D (1909b) Das Nevensystem von Amnmcoetes. II. Gehirn. Arch Mikrosk Anat 74:636–779

    Google Scholar 

  • van Beusekom GT (1955) Fibre analysis of the anterior and lateral funiculi of the cord in the cat. Thesis, Leiden

    Google Scholar 

  • van Crevel H (1958) The rate of secondary degeneration in the central nervous system. Thesis, Leide

    Google Scholar 

  • van den Akker LM (1970) An anatomical outline of the spinal cord of the pigeon. Thesis, Leide

    Google Scholar 

  • Vaney DI, Hughes A (1976) The rabbit optic nerve: fibre diameter spectrum, fibre count, and comparison with a retinal ganglion cell count. J Comp Neurol 170:241–252

    CAS  PubMed  Google Scholar 

  • Veening JG, Swanson LW, Cowan WM, Nieuwenhuys R (1982) The medial forebrain bundle of the rat: II. An autoradiographic study of the topography of the major descending and ascending components. J Comp Neurol 206:82–108

    CAS  PubMed  Google Scholar 

  • Veening J, Buma P, ter Horst GJ, Roeling TAP, Luiten PGM, Nieuwenhuys R (1991) Hypothalamic projections to the PAG in the rat: Topographical, immuno-electron-microscopical and functional aspects. In Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter. Plenum, New York, pp 387–415

    Google Scholar 

  • Verhaart WJC (1947) On thick and thin fibers in the pyramidal tract. Acta Psychiatry Neurol 22:271–281

    Google Scholar 

  • Verhaart WJC (1948a) The pes pedunculi and pyramid. J Comp Neurol 88:139–155

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1948b) The pes pedunculi and pyramid in hylobates. J Comp Neurol 89:71–78

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1950) Hypertrophy of pes pedunculi and pyramid as result of degeneration of contralateral corticofugal fiber tracts. J Comp Neurol 92:1–16

    Google Scholar 

  • Verhaart WJC (1954) Fiber tracts and fiber patterns in the anterior and the lateral funiculus of the cord in Macaca ira. Acta Anat (Basel) 20:330–373

    CAS  Google Scholar 

  • Verhaart WJC (1955) The rubrospinal tract in the cat, the monkey and the ape, its location and fibre content. Monatsschr Psychiatr Neurol 129:487–500

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1962) Anatomy of the brain stem of the elephant. J Hirnforsch 5:455–524

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1963a) The brain stem of the anteater, Myrmecophaga jubata L. J Hirnforsch 6:205–221

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1963b) Pyramidal tract in the cord of the elephant. J Comp Neurol 121:45–49

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1966) The pyramidal tract of Tupaia, compared to that in other primates. J Comp Neurol 126:43–50

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1967) The non-crossing of the pyramidal tract in Procavia capensis (Storr) and other instances of absence of the pyramidal crossing. J Comp Neurol 131:387–392

    Google Scholar 

  • Verhaart WJC (1970) Comparative aspects of the mammalian brain stem and the cord, vol I, II. van Gorcum, Assen

    Google Scholar 

  • Verhaart WJC, Kramer W (1952) The uncrossed pyramidal tract. Acta Psychiatr Scand 27:181–200

    CAS  Google Scholar 

  • Verhaart WJC, Kramer W (1958) Pyramidal crossing in the elephant. Acta Morphol Neerl Scand 2:174–182

    CAS  PubMed  Google Scholar 

  • Verhaart WJC, Noorduyn NJA (1961) The cerebral peduncle and the pyramid. Acta Anat (Basel) 45:315–343

    CAS  Google Scholar 

  • Walmsley B (1991) Central synaptic transmission: studies at the connection between primary afferent fibres and dorsal spinocerebellar tract (DSCT) neurones in Clarke’s column of the spinal cord. Prog Neurobiol 36:391–423

    CAS  PubMed  Google Scholar 

  • Ward R, Repérant J, Rio J-P, Peyrichoux J (1987) Étude quantitative du nerf optique chez la Vipère aspic (Vipera aspis). CR Acad Sci Paris t 304 (Série III) 12:331–336

    Google Scholar 

  • Waxman SG (1972) Regional differentiation of the axon: a review with special reference to the concept of the multiplex neuron. Brain Res 47:269–288

    CAS  PubMed  Google Scholar 

  • Wickelgren WO (1977) Physiological and anatomical characteristics of reticulospinal neurones in lamprey. J Physiol (Lond) 270:89–114

    CAS  Google Scholar 

  • Williams RW, Chalupa LM (1983) An analysis of axon caliber within the optic nerve of the cat: Evidence of size groupings and regional organization. J Neurosci 8:1554–1564

    Google Scholar 

  • Willis WD, Coggeshall RE (1978) Sensory mechanisms of the spinal cord. Plenum, New York

    Google Scholar 

  • Woodburne RT (1939) Certain phylogenetic anatomical relations of localizing significance for the mammalian central nervous system. J Comp Neurol 71:215–257

    Google Scholar 

  • Yasargil GM, Greeff NG, Luescher HR, Akert K, Sandri C (1982) The structural correlate of saltatory conduction along the Mauthner axon in the tench (Tinca tinea L): identification of nodal equivalents at the axon collaterals. J Comp Neurol 212:417–424

    CAS  PubMed  Google Scholar 

  • Zottoli SJ (1978) Comparative morphology of the Mauthner cell in fish and amphibians. In: Faber D, Korn H (eds) Neurobiology of the Mauthner cell. Raven, New York, pp 13–45

    Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nieuwenhuys, R. (1998). Structure and Organisation of Fibre Systems. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics