Skip to main content

Abstract

The preceding chapters of this work have presented a survey of our present knowledge of the structural organisation of the CNS of the various groups of vertebrates. This last chapter will highlight some of the major features revealed by our survey and offer some final comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnati LF, Zoli M, Stromberg I, Fuxe K (1995) Intercellular communication in the brain: wiring versus volume transmission. Neurosci 69:711–726

    CAS  Google Scholar 

  • Alvarez-Bolado G, Rosenfeld MG, Swanson LW (1995) Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birth dates, and morphological features. J Comp Neurol 355:237–295

    CAS  PubMed  Google Scholar 

  • Arbib MA (1965) Brains, machines and mathemathics. McGraw-Hill, New York

    Google Scholar 

  • Arends JJA, Zeigler HP (1991a) Organization of the cerebellum in the pigeon (Columba livia). I. Corticonuclear and corticovestibular connections. J Comp Neurol 306:221–244

    CAS  PubMed  Google Scholar 

  • Arends JJA, Zeigler HP (1991b) Organization of the cerebellum in the pigeon (Columba livia). II. Projections of the cerebellar nuclei. J Comp Neurol 306:245–272

    CAS  PubMed  Google Scholar 

  • Ariëns Kappers CU (1920/1921) Die vergleichende Anatomie des Nervensystems der Wirbeltiere und des Menschen. Bohn, Haarlem

    Google Scholar 

  • Ariëns Kappers CU (1929) The evolution of the nervous system in invertebrates, vertebrates and man. Bohn, Haarlem

    Google Scholar 

  • Ariëns Kappers CU (1947) Anatomie comparée du système nerveux. Bohn, Haarlem

    Google Scholar 

  • Ariëns Kappers CU, Carpenter FW (1911) Das Gehirn von Chimaera monstrosa. Folia Neurobiol 5:127–160

    Google Scholar 

  • Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, vol 1. MacMillan, New York

    Google Scholar 

  • Arshavsky YuI, Orlovsky GN, Panchin YuV, Roberts A, Soffe SR (1993) Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus. Trends Neurosci 16:227–233

    PubMed  Google Scholar 

  • Atema J (1971) Structures and functions of the sense of taste in the catfish (Ictalurus natalis). Brain Behav Evol 4:273–294

    CAS  PubMed  Google Scholar 

  • Barinaga M (1996) The cerebellum: movement coordinator or much more? Science 272:482–483

    CAS  PubMed  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399

    CAS  PubMed  Google Scholar 

  • Belekhova MG (1994) Thalamo-amygdalar auditory-somatic projections are ancient, conservative brain characters of amniotes. Zh Evol Biokhim Fiziol 30:454–473 (in Russian; English translation: J Evol Biochem Physiol 30:284-296)

    Google Scholar 

  • Belekhova MG, Zharskaja VD, Khachunts AS, Gaidaenko GV, Tumanova NL (1985) Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles. Some structural bases for audiosomatic interrelations. J Hirnforsch 26:127–152

    CAS  PubMed  Google Scholar 

  • Bell CC, Szabo T (1986) Electroreception in mormyrid fish. Central anatomy. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 375–421

    Google Scholar 

  • Bell C, Bodznick D, Montgomery J, Bastian J (1997) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50, Suppl 1:17–31

    PubMed  Google Scholar 

  • Bergquist H (1932) Zur Morphologie des Zwischenhirns bei niederen Wirbeltieren. Acta Zool (Stockh) 13:57–303

    Google Scholar 

  • Bergquist H, Källen B (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol 100:627–660

    CAS  PubMed  Google Scholar 

  • Bergquist H, Källén B (1955) The archencephalic neuromery in Ambystoma punctatum. An experimental study. Acta Anat (Basel) 24:208–214

    CAS  Google Scholar 

  • Bertmar G (1981) Evolution of vomeronasal organs in vertebrates. Evolution 35:359–366

    Google Scholar 

  • Billo R, Wake MH (1987) Tentacle development in Dermopis mexicanus (Amphibia, Gymnophiona) with an hypothesis of tentacle origin. J Morphol 192:101–111

    Google Scholar 

  • Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res 25:334–46

    CAS  PubMed  Google Scholar 

  • Breathnach AS (1960) The cetacean central nervous system. Biol Rev 35:187–230

    Google Scholar 

  • Bruce LL, Neary TJ (1995) The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav Evol 46:224–234

    CAS  PubMed  Google Scholar 

  • Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubenstein JLR (1993) Spatially restricted expression of Dix-1, Dix-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 13:3155–3172

    CAS  PubMed  Google Scholar 

  • Bullock TH (1984) The future of comparative neurology. Am Zool 24:693–700

    Google Scholar 

  • Burr HS (1928) The central nervous system of Orthagoriscus mola. J Comp Neurol 45:33–128

    Google Scholar 

  • Butler AB (1994a) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Rev 19:29–65

    CAS  PubMed  Google Scholar 

  • Butler AB (1994b) The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res Rev 19:66–101

    CAS  PubMed  Google Scholar 

  • Butler AB (1995) The dorsal thalamus of jawed vertebrates: a comparative viewpoint. Brain Behav Evol 46:209–223

    CAS  PubMed  Google Scholar 

  • Butler AB, Northcutt RG (1992) Retinal projections in the bowfin, Amia calva: cytoarchitectonic and experimental analysis. Brain Behav Evol 39:169–194

    CAS  PubMed  Google Scholar 

  • Christensen K (1927) The morphology of the brain of Sphenodon. Univ Iowa Stud 12:1–29

    Google Scholar 

  • Craigie EH (1930) Studies on the brain of the kiwi (Apteryx australis). J Comp Neurol 49:223–357

    Google Scholar 

  • Crosby EC (1917) The forebrain of Alligator mississippiensis. J Comp Neurol 27:325–402

    Google Scholar 

  • DeFelipe J, Jones EG (1988) Cajal on the cerebral cortex. Oxford University Press, New York

    Google Scholar 

  • Dexler H, Eger O (1911) Beiträge zur Anatomie des Säugerrückenmarkes. I: Halicore dugong Erxl. Morphol Jahrb 43:107–207

    Google Scholar 

  • Donoghue JP, Ebner FF (1981) The organization of thalamic projections to the parietal cortex of the Virginia opossum. J Comp Neurol 198:365–388

    CAS  PubMed  Google Scholar 

  • Dow RS, Moruzzi G (1958) The physiology and pathology of the cerebellum. University of Minnesota, Minneapolis

    Google Scholar 

  • Dowling JE (1987) Retina, Vertebrate. In: Adelman G (ed) Encylopedia of neuroscience. vol II. Birkhäuser, Boston, pp 1061–1063

    Google Scholar 

  • Dubbeldam JL (1991) The avian and mammalian forebrain: correspondences and differences. In: Andrew RJ (ed) Neural and behavioural plasticity. The use of the domestic chick as a model. Oxford University Press, Oxford, pp 65–91

    Google Scholar 

  • Dumont JPC, Robertson RM (1986) Neuronal circuits: an evolutionary perspective. Science 233:849–853

    CAS  PubMed  Google Scholar 

  • Durward A (1932) Observations on the cell masses in the cerebral hemisphere of the New Zealand kiwi (Apteryx australis). J Anat (Lond) 66:437–466

    CAS  Google Scholar 

  • Duvernoy H, Maillot Cl, Koritké JG (1970) La vascularisation de la moelle épinière chez le chat (Felis domestica). Les artères extramédullaires postérieures. J Hirnforsch 12: 419–437

    PubMed  Google Scholar 

  • Ebbesson SOE, Schroeder DM (1971) Connections of the nurse shark’s telencephalon. Science 173:254–256

    CAS  PubMed  Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Edinger L (1908) Vorlesungen über den Bau der nervösen Zentralorgane. II. Vergleichende Anatomie des Gehirns, 7th edn. Vogel, Leipzig

    Google Scholar 

  • Finger TE (1982) Somatotopy in the representation of the pectoral fin and free fin rays in the spinal cord of the sea robin, Prionotus carolinus. Biol Bull 163:154–161

    Google Scholar 

  • Grillner S, Wallén P, Brodin L, Lansner A (1991) Neuronal networks generating behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. Annu Rev Neurosci 14:169–199

    CAS  PubMed  Google Scholar 

  • Guthrie S (1995) The status of the neural segment. Trends Neurosci 18:74–79

    CAS  PubMed  Google Scholar 

  • Haller B (1891) Ãœber das Centralnervensystem von Orthagoriscus mola. Morphol Jahrb 17:198–268

    Google Scholar 

  • Haller von Hallerstein V (1934) Äußere Gliederung des Zentralnervensystems. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere, vol 2, part 1. Urban and Schwarzenberg, Berlin, pp 1–318

    Google Scholar 

  • Heffner RS, Masterton RB (1983) The role of the corticospinal tract in the evolution of human digital dexterity. Brain Behav Evol 23:165–183

    CAS  PubMed  Google Scholar 

  • Heier P (1948) Fundamental principles in the structure of the brain. A study of the brain of Petromyzon fluviatilis. Acta Anat [Suppl] VI: 1–213

    Google Scholar 

  • Heiligenberg W, Keller CH, Metzner W, Kawasaki M (1991) Structure and function of neurons in the complex of the nucleus electrosensorius of the gymnotiform fish Eigenmannia: detection and processing of electric signals in social communication. J Comp Physiol [A] 169:151–164

    CAS  Google Scholar 

  • Herrick CJ (1910) The morphology of the forebrain in Amphibia and Reptilia. J Comp Neurol 20:413–547

    Google Scholar 

  • Herrick CJ (1921) A sketch of the origin of the cerebral hemispheres. J Comp Neurol 32:429–454

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, Chicago

    Google Scholar 

  • Holland PWH, Garcia-Fernández J (1996) Hox genes and chordate evolution. Dev Biol 173:382–395

    CAS  PubMed  Google Scholar 

  • Holland PWH, Holland LZ, Williams NA, Holland ND (1992) An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development 116:653–661

    CAS  PubMed  Google Scholar 

  • Holmgren N (1922) Points of view concerning forebrain morphology in lower vertebrates. J Comp Neurol 34:391–440

    Google Scholar 

  • Ito M (1993) Synaptic plasticity in the cerebellar cortex and its role in motor learning. Can J Neurol Sci 20[Suppl 3]:S70–S74

    PubMed  Google Scholar 

  • Jankowska E, Lindström S (1971) Morphological identification of Renshaw cells. Acta Physiol Scand 81:428–430

    CAS  PubMed  Google Scholar 

  • Jansen J (1930) The brain of Myxine glutinosa. J Comp Neurol 49:359–507

    Google Scholar 

  • Jefferys JGR, Traub RD, Whittington MA (1996) Neuronal networks for induced ‘40 Hz’ rhythms. Trends Neurosci 19:202–208

    CAS  PubMed  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Johnston JB (1906) The nervous system of vertebrates. Blakiston, Philadelphia

    Google Scholar 

  • Johnston JB (1911a) The telencephalon of selachians. J Comp Neurol 21:1–113

    Google Scholar 

  • Johnston JB (1911b) The telencephalon of ganoids and teleosts. J Comp Neurol 21:489–591

    Google Scholar 

  • Johnston JB (1915) Cell masses in the forebrain of the turtle, Cistudo Carolina. J Comp Neurol 26:475–479

    Google Scholar 

  • Källén B (1955) Notes on the mode of formation of brain nuclei during ontogenesis. CR Assoc Anat XLII:747–756

    Google Scholar 

  • Källén B (1962) Embryogenesis of brain nuclei in the chick telencephalon. Ergeb Anat Entwgesch 36:61–82

    Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (1995) Essentials of neural science and behavior. Appleton and Lange, Norwalk

    Google Scholar 

  • Kanwal JS, Finger TE (1992) Central representation and projections of gustatory systems. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 79–102

    Google Scholar 

  • Karten HJ (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann N Y Acad Sci 167:164–179

    Google Scholar 

  • Kettenmann H, Ransom BR (eds) 1995) Neuroglia. Oxford University Press, Oxford

    Google Scholar 

  • Klinkhachorn PS, Haines DE, Culberson JL (1984a) Cerebellar cortical efferent fibers in the North American opossum, Didelphis virginiana. I. The anterior lobe. J Comp Neurol 227:424–438

    CAS  PubMed  Google Scholar 

  • Klinkhachorn PS, Haines DE, Culberson JL (1984b) Cerebellar cortical efferent fibers in the North American opossum, Didelphis virginiana. II. The posterior vermis. J Comp Neurol 227:439–451

    CAS  PubMed  Google Scholar 

  • Krubitzer L, Manger P, Pettigrew P, Calford M (1995) Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol 351:261–306

    CAS  PubMed  Google Scholar 

  • Kuhlenbeck H (1929a) Ãœber die Grundbestandteile des Zwischenhirnbauplans der Anamnier. Morphol Jahrb 63:50–95

    Google Scholar 

  • Kuhlenbeck H (1929b) Die Grundbestandteile des Endhirns im Lichte der Bauplanlehre. Anat Anz 67:1–51

    Google Scholar 

  • Kuhlenbeck H (1973) The central nervous system of vertebrates, vol 3, part II: overall morphologic pattern. Karger, Basel

    Google Scholar 

  • Kuhlenbeck H, Malewitz TD, Beasley AB (1967) Further observations on the morphology of the forebrain in Gymnophiona, with reference to the topologic vertebrate forebrain pattern. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Plenum, New York, pp 9–19

    Google Scholar 

  • Künzle H (1985) The cerebellar and vestibular nuclear complexes in the turtle. II. Projections to the prosencephalon. J Comp Neurol 242:122–133

    PubMed  Google Scholar 

  • Kusuma A, ten Donkelaar HJ, Nieuwenhuys R (1979) Intrinsic organization of the spinal cord. In: Gans C, Northcutt RG, Ulinski P (eds) Biology of the reptilia, vol 10: neurology B. Academic, London, pp 59–109

    Google Scholar 

  • Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system, vol II: motor control. American Physiological Society, Bethesda, pp 597–666

    Google Scholar 

  • Lamb CF, Caprio J (1993) Diencephalic gustatory connections in the channel catfish. J Comp Neurol 337:400–418

    CAS  PubMed  Google Scholar 

  • Larseil O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Lawrence DG, Kuypers HGJM (1968a) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91:1–14

    CAS  PubMed  Google Scholar 

  • Lawrence DG, Kuypers HGJM (1968b) The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brainstem pathways. Brain 91:15–36

    CAS  PubMed  Google Scholar 

  • Lende RA (1963a) Sensory representation in the cerebral cortex of the opossum (Didelphis virginiana). J Comp Neurol 121:395–414

    CAS  PubMed  Google Scholar 

  • Lende RA (1963b) Motor representation in the cerebral cortex of the opossum (Didelphis virginiana). J Comp Neurol 121:405–415

    CAS  PubMed  Google Scholar 

  • Leonard RB, Willis WD (1979) The organization of the electromotor nucleus and extraocular motor nuclei in the stargazer (Astroscopus y-graecum). J Comp Neurol 183:397–414

    CAS  PubMed  Google Scholar 

  • Llinás R (ed) (1969) Neurobiology of cerebellar evolution and development. American Medical Association, Chicago

    Google Scholar 

  • Llinás RR, Walton KD (1990) Cerebellum. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 214–245

    Google Scholar 

  • Loo YT (1931) The forebrain of the opossum Didelphys virginiana. Part II: histology. J Comp Neurol 52:1–148

    Google Scholar 

  • Lund JS (1988) Anatomical organization of macaque monkey striate cortex. Annu Rev Neurosci 11:253–288

    CAS  PubMed  Google Scholar 

  • Macdonald R, Xu Q, Barth KA, Mikkola I, Holder N, Fjose A, Krauss S, Wilson SW (1994) Regulatory gene expression boundaries demarcate sites of neuronal differentiation in the embryonic zebrafish forebrain. Neuron 13:1039–1053

    CAS  PubMed  Google Scholar 

  • Maren S, Baudry M (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiol Learn Mem 63:1–18

    CAS  PubMed  Google Scholar 

  • Marín O, González A, Smeets WJAJ (1997a) Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens. J Comp Neurol 378:16–49

    PubMed  Google Scholar 

  • Marín O, González A, Smeets WJAJ (1997b) Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens. J Comp Neurol 380:23–50

    PubMed  Google Scholar 

  • Martin GF, Hamel EG (1967) The striatum of the opossum (Didelphis virginiana). J Comp Neurol 131:491–516

    PubMed  Google Scholar 

  • Masai H, Sato Y, Aoki M (1973) The brain of Mitsukurina owstoni. J Hirnforsch 14:493–500

    CAS  PubMed  Google Scholar 

  • Medina L, Reiner A (1995) Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: implications for the evolution of basal ganglia. Brain Behav Evol 46:235–258

    CAS  PubMed  Google Scholar 

  • Meek J (1992) Why run parallel fibers parallel? — Teleostean Purkinje cells as possible coincidence detectors, in a timing device subserving spatial coding of temporal differences. Neuroscience 48:249–283

    CAS  PubMed  Google Scholar 

  • Mickle JP (1976) Efferent connections of the caudate nucleus in the Virginia opossum. J Comp Neurol 166:373–386

    CAS  PubMed  Google Scholar 

  • Millot J, Anthony J (1965) Anatomie de Latimeria chalumnae, vol II: système nerveux et organes de sens. Centre National des Rechèrches Scientifiques, Paris

    Google Scholar 

  • Moodie RL (1915) A new fish brain from the coal measures of Kansas, with a review of other fossil brains. J Comp Neurol 25:135–181

    Google Scholar 

  • Mountcastle VB (1979) An organizing principle for cerebral function: the unit module and the distributed system. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, pp 21–42

    Google Scholar 

  • Muñoz A, Muñoz M, González A, ten Donkelaar HJ (1997) Spinal ascending pathways in amphibians: cells of origin and main targets. J Comp Neurol 378:205–228

    PubMed  Google Scholar 

  • Newman EA (1995) Glial cell regulation of extracellular potassium. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 717–731

    Google Scholar 

  • Newman E, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19:307–312

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1962) Trends in the evolution of the actinopterygian forebrain. J Morphol 111:65–88

    Google Scholar 

  • Nieuwenhuys R (1965) The forebrain of the crossopterygian Latimeria chalumnae Smith. J Morphol 117:1–24

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1994) The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol (Berl) 190:307–337

    CAS  Google Scholar 

  • Nieuwenhuys R, Nicholson C (1969) Aspects of the histology of the cerebellum of mormyrid fishes. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. American Medical Association, Chicago, pp 135–169

    Google Scholar 

  • Nieuwenhuys R, Meek J (1990a) The telencephalon of actinopterygian fishes. In: Jones, EG, Peters A (eds) Cerebral cortex, vol 8A. Plenum, New York, pp 31–73

    Google Scholar 

  • Nieuwenhuys R, Meek J (1990b) The telencephalon of sarcopterygian fishes. In: Jones, EG, Peters A (eds) Cerebral cortex, vol 8A. Plenum, New York, pp 75–106

    Google Scholar 

  • Nissl F (1885) Ueber die Untersuchungsmethoden der Großhirnrinde. Neurol Zentralbl 4:500–501

    Google Scholar 

  • Northcutt RG (1977) Elasmobranch central nervous system organization and its possible evolutionary significance. Am Zool 17:411–429

    Google Scholar 

  • Northcutt RG (1981) Evolution of the telencephalon in non-mammals. Annu Rev Neurosci 4:301–350

    CAS  PubMed  Google Scholar 

  • Northcutt RG (1984) Evolution of the vertebrate central nervous system: patterns and processes. Am Zool 24: 701–716

    Google Scholar 

  • Northcutt RG (1986) Lungfish neural characters and their bearing on sarcopterygian phylogeny. J Morphol, Suppl 1:277–297

    Google Scholar 

  • Northcutt RG (1987) Evolution of the vertebrate brain. In: Adelman G (ed) Encyclopedia of neuroscience, vol I. Birkhäuser, Boston, pp 415–418

    Google Scholar 

  • Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Kaas JH (1995) The emergence and evolution of mammalian neocortex. Trends Neurosci 18:373–379

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 203–255

    Google Scholar 

  • Northcutt RG, Wicht H (1997) Afferent and efferent connections of the lateral and medial pallia of the silver lamprey. Brain Behav Evol 49:1–19)

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Reiner A, Karten HJ (1988) Immunohistochemical study of the telencephalon of the spiny dogfish, Squalus acanthias. J Comp Neurol 277:250–267

    CAS  PubMed  Google Scholar 

  • Parker TJ (1891) Observations on the anatomy and development of Apteryx. Philos Trans R Soc [B] 182:25–134

    Google Scholar 

  • Pilleri (1969) Das hirnanatomische Institut der psychiatrischen Universitätsklinik Bern. Hirnanatomisches Institut, Bern

    Google Scholar 

  • Platel R (1989) L’encéphalisation chez le Tuatara de Nouvelle-Zélande Sphenodon punctatus Gray (Lepidosauria, Sphenodonta). Étude quantifiée des principales subdivisions encéphaliques. J Hirnforsch 30:325–337

    CAS  PubMed  Google Scholar 

  • Porter R, Lemon R (1993) Corticospinal function and voluntary movements. Clarendon, Oxford

    Google Scholar 

  • Prasada Rao PD, Jadhao AG, Sharma SC (1987) Descending projection neurons to the spinal cord of the goldfish, Carassius auratus. J Comp Neurol 265:96–108

    Google Scholar 

  • Puelles L (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol 46:319–337

    CAS  PubMed  Google Scholar 

  • Puelles L, Robles C, Martínez-de-la-Torre M, Martínez S (1994) New subdivision schema for the avian torus semi-circularis: neurochemical maps in the chick. J Comp Neurol 340:98–125

    CAS  PubMed  Google Scholar 

  • Rabl-Rückhard H (1883) Das Grosshirn der Knochenfische und seine Anhangsgebilde. Arch Anat Physiol Anat Abt (Lpz) 279-322

    Google Scholar 

  • Rakic P (1979) Genetic and epigenetic determinants of local neuronal circuits in the mammalian central nervous system. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, pp 109–127

    Google Scholar 

  • Ramón Y Cajal S (1909) Histologie du système nerveux de l’homme et des vertébrés. Tôme I. Malone, Paris (reprinted by CSIC, Madrid 1955; English translation published by Oxford University Press, New York, 1995)

    Google Scholar 

  • Ramön y Cajal S (1911) Histologie du système nerveux de l’homme et des vertébrés. Tôme II. Malone, Paris (reprinted by CSIC, Madrid 1955; English translation published by Oxford University Press, New York, 1995)

    Google Scholar 

  • Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131

    CAS  PubMed  Google Scholar 

  • Rehkämper G, Zilles K (1991) Parallel evolution in mammalian and avian brains: comparative cytoarchitectonic and cytochemical analysis. Cell Tissue Res 263:3–28

    PubMed  Google Scholar 

  • Rehkämper G, Zilles K, Schleicher A (1985) A quantitative approach to cytoarchitectonics. X. The areal pattern of the neostriatum in the domestic pigeon, Columba livia f.d. A cyto-and myeloarchitectonical study. Anat Embryol (Berl) 171:345–355

    Google Scholar 

  • Reiner A, Northcutt RG (1987) An immunohistochemical study of the telencephalon of the African lungfish. J Comp Neurol 256:463–481

    CAS  PubMed  Google Scholar 

  • Rendahl H (1924) Embryologische und morphologische Studien über das Zwischenhirn beim Huhn. Acta Zool (Stockh) 5:241–344

    Google Scholar 

  • Retzius G (1906) Das Affenhirn in bildlicher Darstellung. Fischer, Jena

    Google Scholar 

  • Roberts BL, Ryan KP (1975) Cytological features of the giant neurons controlling electric discharge in the ray Torpedo. J Mar Biol Assoc UK 55:123–131

    Google Scholar 

  • Romer AS (1962) The vertebrate body. Saunders, Philadelphia

    Google Scholar 

  • Ronan M (1989) Origins of the descending spinal projections in petromyzontid and myxinoid agnathans. J Comp Neurol 281:54–68

    CAS  PubMed  Google Scholar 

  • Ronan M, Northcutt RG (1985) The origins of descending spinal projections in lepidosirenid lungfishes. J Comp Neurol 241:435–444

    CAS  PubMed  Google Scholar 

  • Roth G, Nishikawa KC, Naujoks-Manteuffel C, Schmidt A, Wake DB (1993) Paedomorphosis and simplification in the nervous system of salamanders. Brain Behav Evol 42:137–170

    CAS  PubMed  Google Scholar 

  • Rudebeck B (1945) Contributions to forebrain morphology in Dipnoi. Acta Zool (Stockh) 26:9–156

    Google Scholar 

  • Scheibel ME, Scheibel AB (1971) Inhibition and the Renshaw cell. A structural critique. Brain Behav Evol 4:53–93

    CAS  PubMed  Google Scholar 

  • Schmitt FO, Worden FG (1979) The neurosciences fourth study program. MIT Press, Cambridge

    Google Scholar 

  • Schroeder DM, Ebbesson SOE (1974) Nonolfactory telencephalic afferents in the nurse shark (Ginglymostoma cirratum). Brain Behav Evol 9:121–155

    CAS  PubMed  Google Scholar 

  • Segev I (1992) Single neurone models: oversimple, complex and reduced. Trends Neurosci 15:414–421

    CAS  PubMed  Google Scholar 

  • Shepherd GM (1979) The synaptic organization of the brain, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Shepherd GM (1990) (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Shepherd GM, Koch C (1990) Introduction to synaptic circuits. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 3–31

    Google Scholar 

  • Sherrington C (1952) The integrative action of the nervous system. Cambridge University Press, Cambridge

    Google Scholar 

  • Singer M (1962) The brain of the dog in section. Saunders, Philadelphia

    Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ (1990) The telencephalon of cartilaginous fishes. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8A: comparative structure and evolution of cerebral cortex, part I. Plenum, New York, pp 3–30

    Google Scholar 

  • Smeets WJAJ, Reiner A (1994) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Smeets WJAJ, Timerick SJB (1981) Cells of origin of pathways descending to the spinal cord in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 202:473–491

    CAS  PubMed  Google Scholar 

  • Sterling P (1990) Retina. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 170–213

    Google Scholar 

  • Stevens CF (1966) Neurophysiology: a primer. Wiley, New York

    Google Scholar 

  • Stingelin W (1958) Vergleichend morphologische Untersuchungen am Vorderhirn der Vögel auf cytologischer und cytoarchitektonischer Grundlage. Helbing and Lichtenhahn, Basel

    Google Scholar 

  • Striedter GF (1992) Phylogenetic changes in the connections of the lateral preglomerular nucleus in ostariophysan teleosts: a pluralistic view of brain evolution. Brain Behav Evol 39:329–357

    CAS  PubMed  Google Scholar 

  • Swazey JP (1969) Reflexes and motor integration: Sherrington’s concept of integrative action. Harvard University Press, Cambridge

    Google Scholar 

  • Szentágothai J (1979) Local neuron circuits of the cortex. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, pp 399–415

    Google Scholar 

  • ten Donkelaar HJ (1982) Organization of descending pathways to the spinal cord in amphibians and reptiles. Prog Brain Res 57:25–67

    PubMed  Google Scholar 

  • ten Donkelaar HJ (1988) Evolution of the red nucleus and rubrospinal tract. Behav Brain Res 28:9–20

    PubMed  Google Scholar 

  • Tensen J (1927) Einige Bemerkungen über das Nervensystem von Pipa pipa. Acta Zool 8:151–159

    Google Scholar 

  • Tobias TJ, Ebner FF (1973) Thalamocortical projections from the mediodorsal nucleus in the Virginia opossum. Brain Res 52:79–96

    CAS  PubMed  Google Scholar 

  • Ulinski PS, Margoliash D (1990) Neurobiology of the reptile-bird transition. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8A: comparative structure and evolution of cerebral cortex, part I. Plenum, New York, pp 217–265

    Google Scholar 

  • Veenman CL, Wild JM, Reiner A (1995) Organization of the avian ‘corticostriatal’ projection system: a retrograde and anterograde pathway tracing study in pigeons. J Comp Neurol 354:87–126

    CAS  PubMed  Google Scholar 

  • Webster DMS, Rogers LJ, Pettigrew JD, Steeves JD (1990) Origins of descending spinal pathways in prehensile birds: do parrots have a homologue to a corticospinal tract of mammals? Brain Behav Evol 36:216–226

    CAS  PubMed  Google Scholar 

  • Wicht H (1996) The brains of lampreys and hagfishes: characteristics, characters, and comparisons. Brain Behav Evol 48:248–261

    CAS  PubMed  Google Scholar 

  • Wicht H, Himstedt W (1990) Brain stem projections to the telencephalon in two species of amphibians, Triturus alpestris (Urodela) and Ichthyophis kohtaoensis (Gymnophiona). Exp Brain Res Series 19:43–55

    Google Scholar 

  • Wicht H, Northcutt RG (1994) An immunohistochemical study of the telencephalon and the diencephalon in a myxinoid jawless fish, the Pacific hagfish, Eptatretus stouti. Brain Behav Evol 43:140–161

    CAS  PubMed  Google Scholar 

  • Willis WD (1971) The case for the Renshaw cell. Brain Behav Evol 4:5–52

    CAS  PubMed  Google Scholar 

  • Witkovsky P, Nicholson C, Rice ME, Bohmaker K, Meller E (1993) Extracellular dopamine concentration in the retina of the clawed frog, xenopus-laevis. Proc Natl Acad Sci U S A 90:5667–5671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zilles K, Schleicher A, Kretschman HJ (1978) A quantitative approach to cytoarchitectonics. I. The areal pattern of the cortex of Tupaia belangeri. Anat Embryol (Berl) 153:195–212

    CAS  Google Scholar 

  • Zilles K, Stephan H, Schleicher A (1982) Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species. In: Armstrong E, Falk D (eds) Primate brain evolution. Methods and concepts. Plenum, New York, pp 177–201

    Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nieuwenhuys, R., ten Donkelaar, H.J., Nicholson, C. (1998). The Meaning of It All. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics