Skip to main content

Biologische Grundlagen

  • Chapter
  • First Online:
Informationsmanagement in der Systembiologie

Zusammenfassung

Ein Organismus wie zum Beispiel der menschliche Körper besteht aus Billionen von Zellen, die jeweils einen Zellkern enthalten. Jeder dieser Zellkerne wiederum enthält einen Chromosomensatz in doppelter Ausführung, der als Genom bezeichnet wird. Das menschliche Genom besteht aus 23 Chromosomenpaaren. Jedes Chromosom ist ein langes DNA-Molekül, das die Form einer Doppelhelix hat und funktionale Regionen enthält, die Gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 409(6822):860–921, 2001.

    Article  Google Scholar 

  2. M. Krull, S. Pistor, N. Voss, A. Kel, I. Reuter, D. Kronenberg, H. Michael, K. Schwarzer, A. Potapov, C. Choi, O. Kel-Margoulis, and E. Wingender. TRANSPATH(R): an information resource for storing and visualizing signaling pathways and their pathological aberrations. Nucleic Acids Res., 34(Database issue):D546–D551, 2006.

    Article  Google Scholar 

  3. M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. Kawashima, S. Okuda, T. Tokimatsu, and Y. Yamanishi. KEGG for linking genomes to life and the environment. Nucleic Acid Res., 36(Database Issue):D480–D484, 2008.

    Google Scholar 

  4. B. Schoeberl, C. Eichler-Jonsson, E.D. Gilles, and G. Müller. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol., 20:370–375, 2002.

    Article  Google Scholar 

  5. K. Munk, editor. Grundstudium Biologie – Biochemie, Zellbiologie, Ökologie, Evolution. Spektrum Akademischer Verlag, Berlin, Heidelberg, 2000.

    Google Scholar 

  6. R. Caspi, H. Foerster, C.A. Fulcher, P. Kaipa, M. Krummenacker, M. Latendresse, S. Paley, S.Y. Rhee, A.G. Shearer, C. Tissier, T.C. Walk, P. Zhang, and P.D. Karp. The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acid Res., 36(Database issue):D623–D631, 2008.

    Google Scholar 

  7. B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Lehrbuch der Molekularen Zellbiologie. Wiley-VCH-Verlag, Weinheim, 3. edition, 2005.

    Google Scholar 

  8. M. Rosa da Silva, J. Sun, H. Ma, F. He, and A.-P. Zeng. Metabolic networks. In B.H. Junker, F. Schreiber [JS08], pages 233–253, Chapter 10.

    Google Scholar 

  9. F. Börnke. Protein interaction networks. In B.H. Junker and F. Schreiber [JS08], pages 207–232, Chapter 9.

    Google Scholar 

  10. I. Vastrik, P. D’Eustachio, E. Schmidt, G. Joshi-Tope, G. Gopinath, et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol., 8:R39, 2007. PMID: 17367534.

    Article  Google Scholar 

  11. U. Alon. An Introduction to Systems Biology. Design Principles of Biological Circuits. Chapman and Hall, London, New York, 2007.

    Google Scholar 

  12. E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach. Systems Biology in Practice – Concepts, Implementation and Application. Wiley-VCH, Weinheim, 2005.

    Google Scholar 

  13. B.H. Junker. Networks in biology. In B.H. Junker, F. Schreiber [JS08], pages 3–14, Chapter 1.

    Google Scholar 

  14. B. Aranda, P. Achuthan, Y. Alam-Faruque, I. Armean, A. Bridge, C. Derow, M. Feuermann, A.T. Ghanbarian, S. Kerrien, J. Khadake, J. Kerssemakers, C. Leroy, M. Menden, M. Michaut, L. Montecchi-Palazzi, S.N. Neuhauser, S. Orchard, V. Perreau, B. Roechert, K. van Eijk, and H. Hermjakob. The IntAct molecular interaction database in 2010. Nucleic Acid Res., 38(Database Issue): D525–D531, 2010.

    Article  Google Scholar 

  15. A.P. Potapov. Signal transduction and gene regulation networks. In B.H. Junker, F. Schreiber [JS08], pages 183–206, Chapter 8.

    Google Scholar 

  16. S.M. Dauphinee and A. Karsan. Lipopolysaccharide signaling in endothelial cells. Lab Invest., 86(1):9–22, 2006.

    Article  Google Scholar 

  17. B.Ø. Palsson. Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  18. A.M. Lesk. Introduction to Genomics. Oxford University Press, Oxford, 2007.

    Google Scholar 

  19. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature, 431(7011):931–945, 2004.

    Article  Google Scholar 

  20. M.-T. Hütt and M. Dehnert. Methoden der Bioinfomatik - eine Einführung. Springer, Berlin 2006.

    Google Scholar 

  21. J.C. Venter, M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, et al. The sequence of the human genome. Science, 291(5507):1304–1351, 2001.

    Article  Google Scholar 

  22. J.D. Watson and F.H.C. Crick. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 171:737–738, April 1953.

    Article  Google Scholar 

  23. J.D. Watson and F.H.C. Crick. Genetical implications of the structure of deoxyribonucleic acid. Nature, 171:964–967, May 1953.

    Article  Google Scholar 

  24. B.H. Junker. Networks in biology. In B.H. Junker, F. Schreiber [JS08], pages 3–14, Chapter 1.

    Google Scholar 

  25. T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298(5594):799–804, 2002.

    Article  Google Scholar 

  26. F. Börnke. Protein interaction networks. In B.H. Junker and F. Schreiber [JS08], pages 207–232, Chapter 9.

    Google Scholar 

  27. A.M. Lesk. Introduction to Genomics. Oxford University Press, Oxford, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Eckstein .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eckstein, S. (2011). Biologische Grundlagen. In: Informationsmanagement in der Systembiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18234-1_2

Download citation

Publish with us

Policies and ethics