Skip to main content

Tables and Interpolation

  • Chapter
A History of Algorithms
  • 1339 Accesses

Abstract

The construction of tables turned out to be of vital importance for facilitating calculations and for avoiding the need to carry out the same operations many times. We have seen how tables have been constructed from the earliest times, for example, the Babylonians produced tables for calculating ‘inverses’ (Section 1.2 above). In Astronomy, trigonometric tables have played a major role, and these correspond to the tables of chords that Ptolemy produced in the 2nd century (Section 10.1). A table of logarithms is another type of table, specifically introduced to make calculations easier, by transforming multiplications into additions; we shall look at the decimal tables established by Briggs in the 17th century following on from the work of Napier (Section 10.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. Ampère, A.-M., Annales de Gergonne, vol. 26 (1826), 329.

    Google Scholar 

  2. Briggs H., Arithmetica Logarithmica sive Logarithmorum Chiliades Triginta, London, 1624: French tr. Adrien Vlacq, Algorithmique logarithmétique, Gouda, 1628.

    Google Scholar 

  3. Bür gi, J. Arithmetische und geometrische Progress Tabulen, sambt gründlichem Unterricht wie solche nützlich in allerley Rechnungen zugerbrauchen und verstanden werden sol, Prague, 1620.

    Google Scholar 

  4. Cauchy, L.-A., Sur la formule de Lagrange relative à l’interpolation, Cours d’Analyse de l’Ecole Royale Polytechnique, note V, 1821. Oeuvres, series 2, vol. III (pp. 429-433), Paris: Gauthier-Villars, 1897.

    Google Scholar 

  5. Cauchy, L.-A., Sur les fonctions interpolaires, Comptes rendus de l’Académie des Sciences, vol. XI (16 novembre 1840), p. 775. Oeuvres, series 1, vol. V (pp. 409–424), Paris: Gauthier-Villars, 1885.

    Google Scholar 

  6. De Morgan, A., The Differential and Integral Calculus, London, 1842.

    Google Scholar 

  7. Everett, J. D., On a central-difference interpolation formula, British Association Reproductions (1900), 648–650.

    Google Scholar 

  8. Fraser, D. C. Journal of the Institute of Actuaries, vol. 51 (1918-19), 77, 211.

    Google Scholar 

  9. Goldstine, H.H., A History of Numerical Analysis, from the 16th through the 19th Century, New York: Springer, 1977.

    Google Scholar 

  10. Grattan-Guinness, I., Work for the Hairdressers: The Production of de Prony’s Logarithmic and Trigonometric Tables, Annals of the History of Computing, vol. 12 (1990), 177–185.

    Article  MATH  Google Scholar 

  11. Gregory, J., Exercitationes Geometricae, London, 1668.

    Google Scholar 

  12. Hermite, Ch., Extrait d’une lettre de M. Ch. Hermite à M. Borchardt sur la formule d’interpolation de Lagrange, Journal de Crelle, vol. 84 (1878), 70–79.

    Article  Google Scholar 

  13. Knuth, D. E., The Art of Computer Programming, vol. I, Fundamental algorithms, Reading, Massachussets: Addison-Wesley, 1968; 2nd ed. 1973.

    MATH  Google Scholar 

  14. Lagrange, J. L., Leçons élémentaires de mathématiques données à l’Ecole Normale en 1795, Journal de l’Ecole Polytechnique, VIIe et VIIIe cahiers, vol. II (1812). Oeuvres, vol. VII, Paris: Gauthier-Villars, 1877.

    Google Scholar 

  15. Laplace, P.-S., Théorie analytique des probabilités, 1812.

    Google Scholar 

  16. Leibniz, G.W., Lettre à Oldenburg du 3 février 1672, in Commercium Epistolicum D. Johannis Collins, London, 1712.

    Google Scholar 

  17. Lohne, J. A., Thomas Harriot als Mathematiker, Centaurus, vol. 11 (1965), 19–45.

    Article  MathSciNet  Google Scholar 

  18. Mercator, N., Logarithmotechnia, London, 1668.

    Google Scholar 

  19. Napier, J., Mirifici Logarithmorum Canonis descriptio, Edinburgh, 1614.

    Google Scholar 

  20. Naux, Ch., Histoire des logarithmes de Neper à Euler, Paris: Blanchard, 1966.

    MATH  Google Scholar 

  21. Neville, E. H., Iterative interpolation, The Journal of the Indian Mathematical Society, vol. 20 (1933), 87–120.

    Google Scholar 

  22. Newton, I., Methodus Differential, 1711: The Mathematical Works of Isaac Newton, ed. D.T. Whiteside, vol. II (pp. 165-173), Cambridge: Cambridge University Press, 1968.

    Google Scholar 

  23. Newton, I., Philosophiae naturalis Principia mathematica, London, 1687. English tr. Andrew Motte (1729), revised by Florian Cajori, Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and His System of the World, Berkeley, California: University of California Press, 1947.

    Google Scholar 

  24. Newton, I., The correspondence of Isaac Newton, ed. H.W. Turnbull, Cambridge: Cambridge University Press, 1959.

    Google Scholar 

  25. Newton, I., The mathematical papers of Isaac Newton, ed. D.T. Whiteside, vol. IV (1674–1684), Cambridge: Cambridge University Press.

    Google Scholar 

  26. Ptolemy, Syntaxis, i 10, ed. Heiberg i, §§ i. 31.7-32.9. Tr. Ivor Thomas, Greek Mathematical Works, 1941, 1993, Cambridge, Massachussets and London: Loeb Classical Library, Harvard University Press, pp. 423–445.

    Google Scholar 

  27. Sheppard, W. F., Proceedings of the London Mathematical Society, vol. 31 (1899), 459.

    Google Scholar 

  28. Smith, D. E., History of Mathematics, vol II, 1925, reprnt. New York: Dover, 1959.

    Google Scholar 

  29. Stirling, J., Methodus Differentialis: sive Tractatus de Summatione et Interpolatione Serierum Infinitarum, London, 1730.

    Google Scholar 

  30. Voider, J., The CORDIC trigonometric computing technique, IRE Transactions on Computers, vol. Ec-8 (Sept. 1959), 330–334.

    Google Scholar 

  31. Walther, J., A Unified Algorithm for Elementary Functions, Spring Joint Computer Conference Proceedings, vol. 38 (1971), 379–385.

    Google Scholar 

  32. Whittaker, E. T. and G. Robinson, G., The calculus of observations, A treatise on Numerical Mathematics, 1924; 2nd ed. London and Glasgow: Blackie & Son, 1932.

    Google Scholar 

  33. Youschkevitch, A., Les mathématiques arabes (VIII e-XV e siècles), Paris: Vrin, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chabert, JL. (1999). Tables and Interpolation. In: Chabert, JL. (eds) A History of Algorithms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18192-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18192-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63369-3

  • Online ISBN: 978-3-642-18192-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics