An Approach to the Fusion of Probabilities of Activities for the Robust Identification of Activities of Daily Living (ADL)

  • Olaf Wilken
  • Andreas Hein
  • Matthias Gietzelt
  • Jens Spehr

Abstract

This paper describes how the precision of a system, which detects the activities of daily living (ADL), can be increased using the fusion of different sensors. Since many of the same activities can be detected by different sensors simultaneously, the use of fusion is predestined to increase the overall accuracy. The fusion can be used at various points in the data flow. If the fusion is used in the data flow at an early stage less information is lost, but higher effort is necessary for the implementation. In a first approach it is investigated how well the data at the highest level can be fused. At this level the classified activities can be found. The method Dempster Shafer was used to merge the uncertainty of data from different sources. The activity "knitting" could be recognized by the fusion with the data of a study significantly better than without the fusion with the individual classifiers of the sensors (fusion: sensitivity = 83.5%, before: sensitivity = 32.5%).

Keywords

Fusion AAL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abidi, M.A., Gonzalez, R.C.: Data fusion in robotics and machine intelligence. Academic Press Professional, Inc., London (1992)MATHGoogle Scholar
  2. 2.
    John, D., Thomas, D.: Garvey. Evidential reasoning: A developing concept. In: Proceedings of the International Conference on Cybernetics and Society (1982)Google Scholar
  3. 3.
    Linn, R., Hall, D.L., Llinas, J.: A survey of data fusion systems. In: Proceedings of the SPIE Conference on Data Structure and Target Classification, pp. 13–29 (1991)Google Scholar
  4. 4.
    Dempster, A.P.: A generalization of bayesian inference. Journal of the Royal Statistical Society. Series B (Methodological) 30(2), 205–247 (1968)MathSciNetGoogle Scholar
  5. 5.
    Hall, D.L., McMullen, S.A.H.: Mathematical Techniques in Multisensor Data Fusion. Artech Print on Demand, 2 edn. (February 2004)Google Scholar
  6. 6.
    Iverson, G.: Bayesian statistical inference. Sage Publications, Beverly Hills (1984)Google Scholar
  7. 7.
    Klein, L.A.: Sensor and Data Fusion Concepts and Applications. SPIE, San Jose (1999)Google Scholar
  8. 8.
    Klein, L.A.: Sensor and Data Fusion: A Tool for Information Assessment and Decision Making. SPIE Publications, San Jose (July 2004)CrossRefGoogle Scholar
  9. 9.
    Llinas, J., Hall, D.L.: An introduction to multi-sensor data fusion. In: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, ISCAS 1998, vol. 6, pp. 537–540 (1998) Google Scholar
  10. 10.
    Wilken, O., Hein, A., Huelsman, N.: Bestimmung von Verhaltensmustern basierend auf der Nutzung elektrischer Geräte. In: Ambient Assisted Living 2009, pp. 13–29 (2009)Google Scholar
  11. 11.
    Shafer, G.: A mathematical theory of evidence, 1st edn. Princeton University Press, Princeton (1976)MATHGoogle Scholar
  12. 12.
    Waltz, E.L., Llinas, J.: Multisensor Data Fusion. Artech House Inc., Norwood (1990)Google Scholar
  13. 13.
    Wilken, O., Martens, B., Hein, A., Hülsken-Giesler, M., Remmers, H.: Aktivitätsbestimmung und Datenerhebung von älteren Menschen basierend auf der Nutzung elektrischer Geräte. In: GI Jahrestagung, pp. 899–909 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Olaf Wilken
    • 1
  • Andreas Hein
    • 1
  • Matthias Gietzelt
    • 2
  • Jens Spehr
    • 3
  1. 1.OFFIS – Institute for Information TechnologyOldenburgGermany
  2. 2.Peter L. Reichertz Institute for Medical InformaticsUniversity of Braunschweig, and Hannover Medical SchoolGermany
  3. 3.Institute for Robotics and Process ControlUniversity of BraunschweigGermany

Personalised recommendations