Preventive Emergency Detection Based on the Probabilistic Evaluation of Distributed, Embedded Sensor Networks

  • Björn-Helge Busch
  • Alexander Kujath
  • Heiko Witthöft
  • Ralph Welge


To antagonize the outcome of the demographic and the appending structural change also, a human centered assistance sys tem, that means an assistance system, which is completely user orientated, is introduced. The assistance system is realizing a predictive situation recognition with the aid of the evaluation of embedded, local actuators and sensor networks, to regulate and even if necessary to initiate preventive interventions in the user’s environment. The key part of the assistance system is a hierarchical arrangement of functional layers with different capabilities; a main role is taken by the pro babilistic modeling of system inherent activities through stochastic processes. This is demonstrated by a simplified exam ple of emergency case detection including a following diagnosis process, to clarify the excellence and the current weak ness of the assistance system.


Hide Markov Model Description Logic State Sequence Assistance System Probabilistic Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weber, A., Klingholz, R.: Demografischer Wandel – Ein Politikvorschlag unter besonderer Berücksichtigung der Neuen Länder. Berlin-Institut für Bevölkerung und Entwicklung (2008)Google Scholar
  2. 2.
    Statistisches Bundesamt: Bevölkerung Deutschlands bis 2060, 12. koordinierte Bevölkerungsvorausberechnung. Statistisches Bundesamt, Wiesbaden, Gruppe ID, Pressestelle, Gruppe VIA, Demografische Modellrechnungen (2009)Google Scholar
  3. 3.
    Klauber, J., Geraedts, M., Friedrich, J.: Krankenhaus-Report 2010–Krankenhausversorgung in der Krise?, Schattauer, F.K (2010) , ISBN 3794527267Google Scholar
  4. 4.
    Gerhard, L.: Suppression von paroxysmalem Vorhofflimmern durch bifokale, rechtsatriale Schrittmacherstimulation. Berlin, Charité, Univ.-Med., Dissertation (2005)Google Scholar
  5. 5.
    Hördt, M., Tebbe, U., Korb, H.: Differentialdiagnose und Dokumentation tachykarder Rhythmusstörungen. Herzmedizin 20(3), 146–152 (2003)Google Scholar
  6. 6.
    Kouidi, E., Farmakiotis, A., Kouidis, N., Deligiannis, A.: Transtelephonic electrocardiagraphic monitoring for an outpatient cardiac rehabilitation programme. Clin. Rehabil (2006)Google Scholar
  7. 7.
    Busch, B.H., Kujath, A., Welge, R., Witthöft, H., Bette, M.: Architecture of an adaptive, human-centered assistance system. In: Proceedings of the 2010 International Conference on Artificial Intelligence, July 12, pp. 691–696 (2010) ISBN 1-60132-146-5Google Scholar
  8. 8.
    Helbig, M., Sachs, J., Schwarz, U., Schäfer, M.: Ultrabreitband-Sensorik in der medizinischen Diagnostik. In: Proceedings der 41. Jahrestagung der Deutschen Gesellschaft für Biomedizinische Technik BMT, Aachen, Germany (2007)Google Scholar
  9. 9.
    Thomä, R.S., Hirsch, O., Sachs, J., Zetik, R.: UWB Sensor Networks for Position Location and Imaging of Objects and Environments. In: EuCap 2007, Edinburgh (November 2007)Google Scholar
  10. 10.
    Meyer-Delius, D., Plagemann, C., von Wichert, G., Feiten, W., Lawitzky, G., Burgard, W.: A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems. Post-Conference Proceedings of the Conference of the German Classification Society - Gesellschaft für Klassifikation, GFKL (2007)Google Scholar
  11. 11.
    Liao, L., Fox, D., Kautz, H.: “Location-Based Activity Recognition using Relational Markov Networks. In: Proceedings of the International Joint (2005)Google Scholar
  12. 12.
    Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence, UAI (2002)Google Scholar
  13. 13.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1997) ISBN 978-1558604797 Google Scholar
  14. 14.
    Subramanya, A., Raj, A., Bilmes, J., Fox, D.: Recognizing Activities and Spatial Context Using Wearable Sensors. In: Proceedings of Conference on Uncertainty in AI, UAI (2006)Google Scholar
  15. 15.
    Rabiner, R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  16. 16.
    W3C Semantic Web: OWL Web Ontology Language Reference (2009),
  17. 17.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook – Theory, Implementation and Applications. Cambridge University Press, Cambridge (2008) ISBN 978-0521781763Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Björn-Helge Busch
    • 1
  • Alexander Kujath
    • 1
  • Heiko Witthöft
    • 1
  • Ralph Welge
    • 1
  1. 1.Institut VauSTLeuphana Universität LüneburgLüneburgDeutschland

Personalised recommendations