Refractive Surgical Applications of Femtosecond Lasers

  • Frieder H. Loesel
  • Banu Cosar
  • Sinan Goker
  • Ralf Kessler
  • A. Bozkurt Sener
  • Martin Weinacht
  • Leander Zickler

Abstract

Ultrashort pulse lasers have attracted much interest over the past decade and still are a field of vital research. Scientists and engineers initially focused on the laser source itself, with efforts concentrating on the search for reliable pulse-forming processes and the pursuit of novel schemes for pulse amplification. With ultrafast lasers migrating from laboratory setups that require daily “Ph.D. service” to a simple turn-key tool with standalone operation by a nonlaser expert, it is now possible to explore numerous useful applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi: Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24, 631 (1999)PubMedCrossRefGoogle Scholar
  2. 2.
    U. Morgner, F.X. Kärtner, S.M. Cho, Y. Chen, H.A. Haus, J.G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow, T. Tschudi: Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 24, No. 6, 411 (1999)PubMedCrossRefGoogle Scholar
  3. 3.
    R.M. Wood, Laser Damage in Optical Materials (Hilger, Boston, 1996)Google Scholar
  4. 4.
    M.H. Niemz, Laser Tissue Interactions: Fundamentals and Applications (Springer-Verlag, Berlin, 1996)Google Scholar
  5. 5.
    T. Juhasz, G.A. Kastis, C. Suarez, Z. Bor, W.E. Bron: Time-resolved observation of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water. Lasers Surg. Med. 19, 23 (1996)PubMedCrossRefGoogle Scholar
  6. 6.
    W. Kautek, S. Mitterer, J. Krüger, W. Husinsky, G. Grabner: Femtosecond-pulse laser ablation of human corneas. Appl. Phys. A 58, 513 (1994)CrossRefGoogle Scholar
  7. 7.
    D.X. Hammer, R.J. Thomas, G.D. Noojin, B.A. Rockwell, P.K. Kennedy, W.P. Roach: Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media. IEEE J. Quant. Electron. 32, 670 (1996)CrossRefGoogle Scholar
  8. 8.
    F.H. Loesel, M.H. Niemz, J.F. Bille, T. Juhasz: Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model. IEEE J. Quant. Electron. 32, 1717 (1996)CrossRefGoogle Scholar
  9. 9.
    F.H. Loesel, A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, R.M. Kurtz, S. Sayegh, T. Juhasz: Effect of reduction of laser pulse width from 100 ps to 20 fs on the plasma-mediated ablation of hard and soft tissue. Proc. SPIE 3565, 116 (1998)Google Scholar
  10. 10.
    U. Keller, D.A.B. Miller, G.D. Boyd, T.M. Chiu, J.F. Ferguson, M.T. Asom: Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. Opt. Lett. 17, 505 (1992)PubMedCrossRefGoogle Scholar
  11. 11.
    G. Mourou: The ultrahigh-peak-power laser: Present and future. Appl. Phys. B 865, 205 (1997)CrossRefGoogle Scholar
  12. 12.
    F.H. Loesel, J.P. Fischer, M.H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, J.F. Bille: Non-thermal ablation of neural tissue with femtosecond laser pulses. Appl. Phys. B 866, 121 (1998)Google Scholar
  13. 13.
    T. Juhasz, F.H. Loesel, R.M. Kurtz, C. Horvath, J.F. Bille, G. Mourou: Corneal refractive surgery with femtosecond lasers. IEEE J. Quant. Electron. 5, 902 (1999)CrossRefGoogle Scholar
  14. 14.
    A. Heisterkamp, T. Ripken, E. Liitkefels, W. Drommer, H. Lubatschowski, W. Welling, W. Ertmer: Optimierung der Laserparameter für die intrastromale Schnittführung mittels ultrakurzer Laserpulse. Ophthalmologe 98, 623 (2001)PubMedCrossRefGoogle Scholar
  15. 15.
    T. Juhasz, F.H. Loesel, C. Horvath, R.M. Kurtz, G. Mourou: Femtosecond Lasers for ultra-accurate surgery: Application to corneal surgery. Ultrafast Phenomena, 42 (1998)Google Scholar
  16. 16.
    M.B. Hamill, T. Kohnen: Scanning electron microscopic evaluation of the surface characteristics of 4 microkeratome systems in human corneas. J. Cataract. Refract. Surg. 28, 328 (2002)PubMedCrossRefGoogle Scholar
  17. 17.
    Ö. Ö. Oça khan: Corneal flap thickness in laser in situ keratomileusis using the Summit Krumeich-Barraquer microkeratome. J. Cataract. Refract. Surg 28, 798 (2002)Google Scholar
  18. 18.
    R.M. Kurtz, G.J.R. Spooner, K. Sletten, K. Yen, S. Sayegh, F.H. Loesel, C. Horvath, H. Liu, V. Einer, D. Cabrera, M.-H. Meunier, Z. Sacks, T. Juhasz, D.L. Miller, A.R. Williams: Ophthalmic applications of femtosecond lasers. Proc. SPIE 3616, 51 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Frieder H. Loesel
    • 1
  • Banu Cosar
    • 2
  • Sinan Goker
    • 3
  • Ralf Kessler
    • 1
  • A. Bozkurt Sener
    • 2
  • Martin Weinacht
    • 1
  • Leander Zickler
    • 4
  1. 1.20/10 Perfect VisionOptische Geräte GmbHHeidelbergGermany
  2. 2.Acibademgoz Eye ClinicIstanbulTurkey
  3. 3.Istanbul Cerrahi Hastanesi Ferah Sokak NisantasiIstanbulTurkey
  4. 4.Kirchhoff Institute of PhysicsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations