The Development of Wavefront Technology and its Application to Ophthalmology

  • Josef F. Bille
  • Ulrich von Pape


Wavefront technology was originally developed for the improvement of star images in optical astronomy. In 1978, this technology was for the first time applied to ophthalmology. At the University of Heidelberg, Germany, a closed loop adaptive optical system was designed to compensate for optical aberrations of the human eye. In the meantime, superresolution in retinal imaging has been achieved, providing detailed information on photoreceptors, small blood vessels, and nerve fiber structure in the human eye in vivo. Recently, new wavefront technology has been developed for the assessment of the human eye and it is now possible to apply a custom treatment to the eye, using the excimer laser. An adaptive optical closed loop system has been devised for preoperative simulation of refractive outcomes of aberration-free refractive surgical procedures. Treatment of a patient’s entire wavefront error has been demonstrated to improve the patient’s visual acuity beyond best spectacle-corrected vision.


Point Spread Function Modulation Transfer Function Adaptive Optic Optical Aberration Lens Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.F. Bille, K. Freischlad, G. Jahn, F. Merkle: Image restoration by adaptive-optical phase compensation. Proceedings “6th International Conference on Pattern Recognition”, Munich, Germany, Oct. 19-22, 1982Google Scholar
  2. 2.
    J.F. Bille: Method and Apparatus for Forming an Image of the Ocular Fundus, U.S. Patent 4, 579, 430 (April 1, 1986)Google Scholar
  3. 3.
    J.F. Bille, G. Jahn, M. Frieben: Modal control for wavefront reconstruction in adaptive optics. Advanced Technology Optical Telescopes, SPIE 332, 269 (1982)CrossRefGoogle Scholar
  4. 4.
    J.F. Bille, B. Grimm, J. Liang, K. Mueller: Imaging of the retina by scanning laser tomography. New Methods in Microscopy and Low Light Imaging, SPIE 1161, 417 (1989)Google Scholar
  5. 5.
    J. Liang: A new method to precisely measure the wave aberrations of the human eye with a Hartmann-Shack sensor. Dissertation, Ruprecht-Karls-Universität, Heidelberg, 1991Google Scholar
  6. 6.
    J. Liang, B. Grimm, S. Goelz, J.F. Bille: Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wavefront sensor, J. Opt. Soc. Am. A 11, 1949 (1994)CrossRefGoogle Scholar
  7. 7.
    M. Kasper, D. Looze, S. Hippler, T. Herbst, A. Glindemann, T. Ott, A. Wirth: ALFA: Adaptive Optics Calar Alto Observatory — optics, control system, and performance. Exp. Astron. 10, 49 (2000)CrossRefGoogle Scholar
  8. 8.
    A.W. Dreher, J.F. Bille, R.N. Weinreb: Active optical depth improvement of the laser tomographic scanner. Appl. Opt. 28, 804 (1989)PubMedCrossRefGoogle Scholar
  9. 9.
    G.V. Vdovin: Adaptive mirror micro machined in silicon. PhD thesis, University of Delft, Netherlands, 1997Google Scholar
  10. 10.
    D. Droste, J.F. Bille: An ASIC for Hartmann-Shack wavefront detection. IEEE J. Solid-State Circuits (2002)Google Scholar
  11. 11.
    E.S. Claflin, N. Baraket: Configuring on electrostatic membrane mirror by least-squares fitting with analytically derived influence functions. J. Opt. Soc. Am. A 3, 1833 (1986)CrossRefGoogle Scholar
  12. 12.
    F. Mül ler: Konzeption und Entwicklung eines adaptiv-optisch korrigierten Laser-Scanning Retina-Tomographen, Dissertation, University of Heidelberg, 2001Google Scholar
  13. 13.
    S. Wühl: Aktive Korrektur optischer Aberrationen mittels genetischer Algorithmen, Diploma Thesis, University of Heidelberg, 2000Google Scholar
  14. 14.
    R. Ragazzoni: Pupil plane wavefront sensing with an oscillating prism. J. Mod. Opt. 43, 289 (1996)CrossRefGoogle Scholar
  15. 15.
    J.F. Bille: Method for Programming an Active Mirror to Mimic a Wavefront, U.S. Patent 6, 220, 707 B1 (April 24, 2001)Google Scholar
  16. 16.
    U. von Pape: Wavefront sensing in the human eye. PhD Dissertation, University of Heidelberg, 2002Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Josef F. Bille
    • 1
  • Ulrich von Pape
    • 2
  1. 1.Kirchhoff Institute of PhysicsUniversity of HeidelbergHeidelbergGermany
  2. 2.20/10 Perfect Vision, Optische Geräte GmbHHeidelbergGermany

Personalised recommendations