Skip to main content

The Topic Analysis of Hospice Care Research Using Co-word Analysis and GHSOM

  • Conference paper
Intelligent Computing and Information Science (ICICIS 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 134))

Abstract

The purpose of this study was to propose a multi-layer topic map analysis of palliative care research using co-word analysis of informetrics with Growing Hierarchical Self-Organizing Map (GHSOM). The topic map illustrated the delicate intertwining of subject areas and provided a more explicit illustration of the concepts within each subject area. We applied GHSOM, a text-mining Neural Networks tool, to obtain a hierarchical topic map. The result of the topic map may indicate that the subject area of health care science and service played an importance role in multidiscipline within the research related to palliative care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cameron, C.S.: Professional Attitudes and Terminal Care. Public Health Rep. 67, 955–959 (1952)

    Article  Google Scholar 

  2. Payne, S.A., Turner, J.M.: Research methodologies in palliative care: a bibliometric analysis. Palliat 22, 336–342 (2008)

    Article  Google Scholar 

  3. Dittenbach, M., Rauber, A., Merkl, D.: Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomputing 48, 199–216 (2002)

    Article  MATH  Google Scholar 

  4. Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks 13, 1331–1341 (2002)

    Article  MATH  Google Scholar 

  5. Campanario, J.: Using neural networks to study networks of scientific journals. Scientometrics 33, 23–40 (1995)

    Article  Google Scholar 

  6. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological cybernetics 43, 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., Saarela, A.: Self organization of a massive document collection. IEEE Transactions on Neural Networks 11, 574–585 (2000)

    Article  Google Scholar 

  8. Noyons, E., van Raan, A.: Monitoring scientific developments from a dynamic perspective: self-organized structuring to map neural network research. Journal of the American Society for Information Science 49, 68–81 (1998)

    Google Scholar 

  9. Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks 13, 1331 (2002)

    Article  MATH  Google Scholar 

  10. Shih, J., Chang, Y., Chen, W.: Using GHSOM to construct legal maps for Taiwan’s securities and futures markets. Expert Systems with Applications 34, 850–858 (2008)

    Article  Google Scholar 

  11. Li, S.T., Chang, W.C.: Design And Evaluation Of A Layered Thematic Knowledge Map System. Journal of Computer Information Systems 49 (2009)

    Google Scholar 

  12. Wolfram, D.: Applied informetrics for information retrieval research. Greenwood Publishing Group, Westport (2003)

    Google Scholar 

  13. Salton, G.: Automatic text processing: the transformation, analysis, and retrieval of information by computer. Addison-Wesley, Reading (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, YH., Bhikshu, H., Tsaih, RH. (2011). The Topic Analysis of Hospice Care Research Using Co-word Analysis and GHSOM. In: Chen, R. (eds) Intelligent Computing and Information Science. ICICIS 2011. Communications in Computer and Information Science, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18129-0_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18129-0_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18128-3

  • Online ISBN: 978-3-642-18129-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics